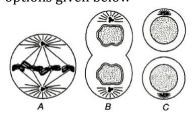
NEET BIOLOGY

CELL CYCLE AND CELL DIVISION

1.	The second meiotic division leads to		
	a) Separation of sex chromosomes		
	b) Fresh DNA synthesis		
	c) Separation of chromatids and centromere		
	d) Separation of homologous chromosomes		
2.	In meiosis, chromosome number becomes		
	a) Half of its parent chromosome		
	b) Same as that of parent chromosome		
	c) One fourth of its parent chromosome		
	d) None of the above		
3.	Consider the following statements about plant cyto	okinesis	
	I. It usually occurs by cell plate method		
	II. The spindle usually persists during cytokinesis		
	III. Cell plate grows centrifugally		
	Which of the statements given above are correct?		
	a) I and II b) I and III	c) II and III	d) I, II and III
4.	\mathbf{I}		-
	II. In animal cells, during theB phase, DNA repl	ication begins in the nucle	us and the centriole
	duplicates in the cytoplasm		
	III. During theC phase, proteins are synthesized	d for the preparation of mi	itosis, while cell growth
	continues		
	Identify the blanks (A-C) to complete the given sta		
	a) $A-G_2$, $B-S$, $C-G_1$ b) $A-S$, $B-G_2$, $C-G_1$	c) A-S, B-G ₁ , C-G ₂	d) A-G ₁ , B-S, C-G ₂
5.	Select the matched ones.		
	I. S-phase - DNA replication		
	II. Zygotene - Synapsis		
	III. Diplotene - Crossing over		
	IV. Meiosis - Both haploid and diploid c	ells	
	V <i>G</i> ₂ -phase - Quiescent stage		
	a) I and II only b) III and IV only	c) III and V only	d) I,III and V only
6.	Which type of cell division helps in regeneration of	cells?	
	a) Mitosis b) Amitosis	c) Meiosis	d) Karyokinesis
7.	0 () /		
	I. Meiosis involves pairing of homologous chromos		between them
	II. Two diploid cells are formed at the end of meios		
	III. Meiosis involves two sequential cycles of nuclea	ar and cell division called r	neiosis-I and meiosis-II, but
	only a single cycle of DNA replication		
	IV. Meiosis-I is initiated after the parental chromos	ome replication which pro	oduce identical sister
	chromatids at the S-phase		
	The correct option is		

	a) I and III	b) II only	c) II and III	d) I, II, III and IV
8.	Choose the correct stater	nents regarding cell cycle		
	I. Interphase is called the			
	II. Interphase is the time	during which the cell is pre	paring for division	
	III. The interphase is divi	ded into phases, <i>i.e.</i> , G ₁ , S a	and G ₂ -phase	
		s the phase between the two	o successive M-phases	
	The option with correct s			
	a) I and IV	b) II and III	c) I and III	d) I, II, III and IV
9.	Crossing over occurs dur			
	a) Leptotene	b) Diplotene	c) Pachytene	d) Zygotene
10.			ate or segregated from eac	h other. How many allele(s)
	is/are then transmitted t			
	a) Four	b) Two	c) Six	d) One
11.				
	a) Beginning of anaphase	2		
	b) End of anaphase	_		
	c) Beginning of telophase	2		
10	d) End of telophase	nocomos con ho studiod mo	oct opcily in	
12.	a) Prophase	nosomes can be studied mo b) Metaphase	c) Anaphase	d) Telophase
13.	<i>,</i>	of mitosis by viewing the c	<i>,</i>	uj reiopilase
13.		ar envelope	liagranii carefuny:	
		natin threads		
	AND Nucleo			
	Centri	oles		
	Cytop			
		urface membrane		
	a) Interphase	b) Prophase	c) Metaphase	d) Anaphase
14.				
4 5	· ·	b) Anaphase-II	c) Telpohase-I	d) Telophase-II
15.	-	phase of cell cycle, mitotic		d) Multana
16	a) G ₂ -phase	b) G ₀ -phase	c) S-phase	d) M-phase
10.		hase of cell cycle is also kno b) M-phase	c) S-phase	d) Interphase
17	a) G ₁ -phase Differentiated cell remain	<i>y</i> 1	cj s-pliase	d) Interphase
17.	a) G_1	b) G ₂	c) (d) M
18.	· ·	is refers to the division of	c) G ₀	uj M
10.	a) Nucleus	b) Chromosomes	c) Cytoplasm	d) None of these
19		ination of options to select		-
17.		condenses to form compac		ropiluoc
		ic spindle is initiated by the		
		anelles when viewed under		
		eoli degenerate completely		
	a) I only	b) II and III	c) I and II	d) All of these
20.	· ·	vent distinguishes prophase	•	
_0.	a) Nuclear membrane br		b) Chromosomes become	
	c) Homologous chromos		d) Spindle forms	
21.	During mitosis, number of)-r	
	a) Change			
	b) No change			
1				

22.	 c) May be change if cell is mature d) May be change if cell is immature I. Chromosomes cluster at opposite spindle poles the II. Nuclear envelope assembles around the chromose III. Nucleolus, Golgi complex and ER reform Above features indicates which phase of mitosis 	=	te elements
	a) Anaphase b) Telophase	c) Cytokinesis	d) S-phase
23	What would be the change in the chromosome number		uj 5-pilase
25.	a) No change	ber, during 5 phase.	
	b) The number of chromosome doubles		
	c) The number of chromosome doubles only in case	of diploid cell	
	d) The number of chromosome doubles only in case		
24.	Arrange the following events of meiosis in a correct	-	orrect option
	I. Terminalisation		
	II. Crossing over		
	III. Synapsis		
	IV. Disjunction of genomes		
	a) IV, III, II and I b) III, II, I and IV	,	d) I, IV, III and II
25.	What is the approximate percentage duration of cell		
	a) 99% b) 95%	c) 25%	d) 5%
26.	Which of the following stage of meiosis is responsible		-
27	a) Metaphase-II b) Anaphase-II A mitotic cell division is only seen in the diploid	c) Metaphase-I	d) Anaphase-I
27.	divisions in both haploid and diploid cells.	somatic cens, while the	
	Identify A and B form the options given below		
		c) A-Bacterial; B-viruses	d) None of these
28.	Given diagram indicates which of the following phas	-	
		a) Matanhaga	d) Anonhoso
20	a) Interphase b) Prophase	c) Metaphase	d) Anaphase
29.	In meiosis, the chromosome number a) Reduces by half	b) Increase by twice	
	c) Increase by four times	d) Reduces by one-fourth	
30.	The phase between two successive M-phase is called	-	L
	a) S-phase b) G_1 -phase	c) G ₂ -phase	d) Interphase
31.	At the end of meiosis-II, number of haploid cells form		y 1
	a) Two b) Four	c) Eight	d) None of these
32.	The transition between meiosis-I and meiosis-II is		
	a) Interkinesis b) Cytokinesis	c) Diakinesis	d) Karyokinesis
33.	5 1		
	a) A male and a female gamete		
	b) <i>m</i> RNA and ribosomes		
	c) Spindle fibres and centromered) Two homologous chromosomes		
	a) i wo nomologous chi omosonies		
			Page 3


34.	In which stage of cell divi			
	a) Prophase	b) Metaphase	c) Anaphase	d) Telophase
35.	Which of the protein is fo	=		
0.0	a) Tubulin	b) Albumin	c) Mucin	d) Haemoglobin
36.	_	ents occurs during G ₁ -pha	ase?	
	a) DNA replication			
	b) Growth and normal fur	nction of cell		
	c) Mutation			
~ -	d) Fertilization			
37.		ents regarding S-phase of i	interphase	
	I. Occurs between G_1 and	=		
	II. DNA replication begins			
	III. Centrioles duplicate in			
		mber of chromosomes als	o doubles	
	The option with correct s			
	a) IV and III	b) I, II, III and IV	c) II, III and IV	d) I, II and III
38.	A material, which arrests			
	a) Crocus	b) Colchicum	c) Dalbergia	d) Chrysanthemum
39.	-		-	omatids. This event is called
	a) Interference	b) Complementation	c) Non-disjunction	d) Coincidence
40.		vide further, exit G ₁ -phase	to enter an inactive stage c	alledA phase of the cell
	cycle			
	—	-phase definitely continue	=	
		ete the given NCERT state		
	a) A-G ₀ ; B-S	b) A-S; B-G ₀	c) A-M; B-G ₀	d) A-G ₀ ; B-M
41.	• •	nes segregate when a cell	undergoes meiosis?	
	a) Homologous chromoso			
	b) Non- homologous chro	omosomes		
	c) Both (a) and (b)			
	d) Centric and acentric ch			
42.	Term 'meiosis' was propo	-		
	a) Farmer and Moore	b) Flemming	c) Strasburger	d) Darlington
43.	Meiosis can be observed	in		
	a) tapetal cells			
	b) Megaspores			
	c) Micropores			
	d) Spore mother cells			
44.			in higher organisms occur	s between
	a) Sister chromatids of bi			
	b) Non-Sister chromatids	ot a bivalent		
	c) Two daughter nuclei			
	d) Two different bivalent			•
45.		stage of the cell cycle, the	attachment of spindle fibre	s to kinetochores of
	chromosomes occurs?			
	a) Prophase	b) Metaphase	c) Anaphase	d) Telophase
46.				other constituents of the cell
	-	to two daughter cells is ter		
	a) Cell division	b) Cell cycle	c) Cell growth	d) Cell duplication
47.	In animal cell has, cytokin			
	a) The separation of siste	er chromatids		
				Page 4

	b) The contraction of the	contractile ring of micro fi	lament	
	=	sinetochore microtubules		
		phosphorylaes other enzym	ies	
48.	Which is correct for meio			
	a) Bivalents are arranged	-		
	b) Univalents are arrang	_		
	c) Non-homologous chro	•		
	d) Spindle fibres are atta	=		
49.		ange of genetic material be	etween	
		s of the homologous chrom		
	b) Sister chromatids of th	he homologous chromosom	ne	
	c) Chromatids of non-ho	mologous chromosomes		
	d) The genes those are co	ompletely linked		
50.	Which of the following p	hase of the cell cycle is not	a part of interphase?	
	a) S	b) M	c) G ₀	d) G ₁
51.	Colchicine arrests which	of the following stage of ce	ll division?	
	a) Prophase	b) Anaphase	c) Telophase	d) Metaphase
52.	Select the correct option	with respect to mitosis.		
	-	ing towards opposite poles	-	
	b) Golgi complex and end	doplasmic reticulum are sti	ll visible at the end of prop	hase
	c) Chromosomes move t	o the spindle equator and g	get aligned along equatorial	l plate in metaphase
		but remains in the centre of	=	
53.	=	ures at the surface of the ce	= =	
	a) Kinetochores	b) Metaphase plate	c) Spindle fibres	d) Chromatid
54.		topped in which phase of the	=	
	a) G ₁ -phase	b) G ₂ -phase	c) S-phase	d) Prophase
55.	Meiosis in AaBb will pro	-		
	a) AB, aB, Ab, ab	b) AB, ab	c) Aa, bb	d) Aa, Bb
56.	The stage between two n			
	a) Interphase	b) Cytokinesis	c) Interkinesis	d) Karyokinesis
57.		crossing over, how many d	ifferent haploid cells arise	by meiosis in a diploid cell
	having $2n = 12$?	L) 1(-) 22	
F 0	a) 8 Which of the following C	b) 16	c) 32	d) 64
58.		dKs and cyclins comes und	= =	d) CdV / Crealin D
FO	a) CdK_4 / Cyclin D	b) CdK ₆ / Cyclin D	c) Both (a) and (b)	d) CdK ₂ / Cyclin B
59.	Crossing over occurs at a) Single strand stage			
	b) Two strand stage			
	c) Four strand stage			
	d) Eight strand stage			
60.		n be doubled by using whic	rh of the following?	
00.	a) Indole acetic acid	if be doubled by doing write	in of the following.	
	b) GA			
	c) Zeatin			
	d) Colchicines			
61.	Dictyotene a is prolonge	d		
~	a) Leptotene	b) Pachytene	c) Diplotene	d) Zygotene
62.		unique to mitosis and not		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-	omes behave independentl	-	
	b) Chromatids are separa	=	-	
	,	0 1		Pagels

c) H	omologous	chromosomes	pair	and	form	bivalents
------	-----------	-------------	------	-----	------	-----------

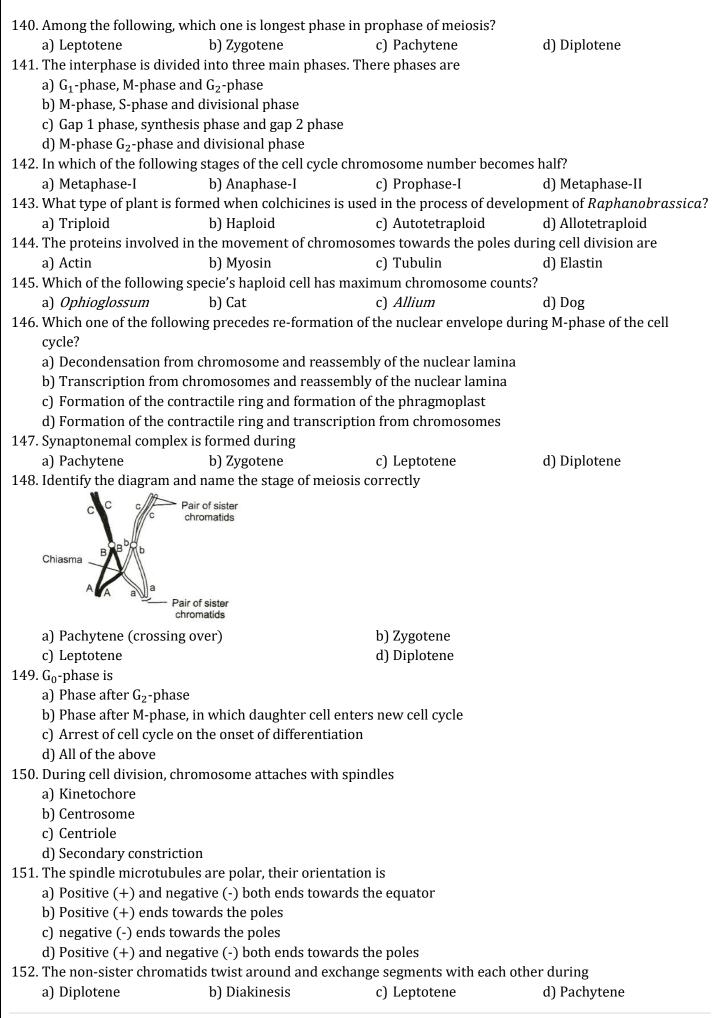
d) Homologous chromosomes crossover

- 63. Spindle fibre is made up of
 - a) Humulin
 - b) Intermediate filament
 - c) Flagellin
 - d) Tubulin
- 64. There are three genes *a*, *b*, *c* with percentage of crossing over between *a* and *b* is 20%, *b* and *c* is 28% and *a* and *c* is 8%. What is the sequence of genes on chromosome?
- a) *b*, *a*, *c*b) *a*, *b*, *c*c) *a*, *c*, *b*d) None of these
 65. See the diagrams carefully and identify the different stages of mitosis (*A C*) by choosing appropriate options given below

- a) A-Metaphase; B-Telophase; C-Interphase
- b) A-Telophase; B-Metaphase; C-Prophase
- c) A-Anaphase; B-Telophase; C-Interphase
- d) A-Telophase; B-Anaphase; C-Prophase
- 66. During which stage of meiosis, do tetrads line up at the equator?
- a) Prophase-I
 b) Telophase-I
 c) Metaphase-I
 d) Anaphase-I
 67. The anaphase promoting complex is activated by
 a) M cdk cyclin
 b) G₁ cdk cyclin
 c) S cdk cyclin
 d) Transaction factor
- 68. A cell plate is laid down during
 - a) Cytokinesis
 - b) Karyokinesis
 - c) Interphase
 - d) None of these
- 69. During which stage of meiosis, do the sister chromatids begin to move towards the poles? a) Prophase-I b) Telophase-I c) Anaphase-II d) Anaphase-I
- 70. In a cell cycle, which structures serves as the site of attachment of spindle fibres?
- a) Chromosomes b) Histone c) Chromonemeta d) Kinetochore
- 71. Identify the diagram and name the phase of meiosis carefully

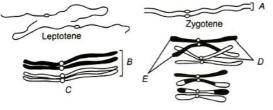
	a) Telophase-I	b) Anaphase-I	c) Metaphase-I	d) Prophase-I
72.	Which of the following se	rves as mitotic spindle pois	son?	
	a) Ca ²⁺	b) Mg ²⁺	c) Tubulin	d) Colchicine
73.	Chromosomes are visible	with chromatids at which	phase of mitosis?	
	a) Interphase	b) Prophase	c) Metaphase	d) Anaphase
74.	RNA and proteins are for	ned in		
	a) G ₁ -phase	b) G ₂ -phase	c) S-phase	d) G _o -phase

75. Give the name of the phases of meiosis, in which


	I. the chromosome number is reduced to haploid sta	ate	
	II. the amount of DNA is reduced to haploid state		
	The correct option is		
	a) Anaphase-II; anaphase-I		
	b) Anaphase-I, metaphase-II		
	c) Anaphase-I, anaphase-II		
	d) Anaphase-II, metaphase-I		
76.	What type of cell division takes place in the function	al megaspore initially in ar	igiosperms?
	a) Homeotypic without cytokinesis		
	b) Reductional without cytokinesis		
	c) Somatic followed by cytokinesis		
	d) Meiotic followed by cytokinesis		
77.	Which of the following statements are correct for m		
	I. Cell division brings about embryonic development	-	
	II. It plays a role in repair and maintenance of the bo	ody	
	III. It is important for reproduction		
	The correct option is		
	a) Only I b) I and III	c) Only II	d) I, II and III
78.	Meiosis involves two sequential cycles ofA calle	d meiosis-I and meiosis-II b	out only a single cycle of
	B		
	Identify A and B to complete the given statement		
	a) A-nuclear and cell division, B-DNA replication	b) A-cell division, B-DNA	=
-0	c) A-DNA replication, B-cell division	d) A-nuclear division, B-I	ONA replication
79.	During, meiosis-I, the bivalent chromosomes clearly		
	a) Diakinesis b) Diplotene	c) Leptotene	d) Pachytene
80.	DNA replicates		
	a) Twice in each cell cycle		
	b) Only once in each cell cycle		
	c) Once in mitotic cell cycle, once in meiotic-I (reduc	ctional division) and once i	n melotic-ll (equational
	division)		
01	d) None of the above		
81.	Select the correct sequence of a cell cycle $a = 1$	$h \in \mathcal{L} \to M \to C$	
	a) $G_2 \rightarrow M \rightarrow G_1 \rightarrow S$ c) $G_1 \rightarrow S \rightarrow G_2 \rightarrow M$	b) $S \rightarrow G_2 \rightarrow M \rightarrow G_1$ d) $M \rightarrow G_1 \rightarrow G_2 \rightarrow M$	
02	$G_1 \rightarrow S \rightarrow G_2 \rightarrow M$ Which of the following statements are correct for m	,	
02.	I. Meiosis is a double division. It gives rise to four ce		
	II. The cells undergoing meiosis may be haploid or d		
	III. No bouquet stage is recorded	npiola	
	IV. Pairing or synapsis of homologous chromosomes	s takes place during zvgoter	ne of prophase-I and
	continues upto metaphase-I	stakes place during zygoter	ie of prophase Tana
	Option containing correct statement is		
	a) I only b) I and IV	c) II and III	d) All of these
83.	Mature nerve cells are incapable of cell division. The	-	
001	a) G_2 -phase b) S-phase	c) Mitosis	d) G _o -phase
84.	Mitosis or the equational division is usually restricted	-	
	some social insectsB cells also divide by mitosis		
	Choose the correct option for A and B from the given		
	A B	•	
	a) Haploid; diploid b) Haploid; haploid	c) Diploid; diploid	d) Diploid; haploid
85.	The spindles are formed of		

	a) Chromosome	b) Actin	c) Microtubules	d) Myosin
86.	-	ucleolus begin to disappear		
	a) Late prophase	b) Early metaphase	c) Late metaphase	d) Early prophase
87.		=	phase stage of cell cycle is r	
~~	a) Prophase plate	b) Metaphase plate	c) Anaphase plate	d) Telophase plate
88.	_	-	ents with reference to meio	SIS
		e absent on chromosomes		
	II. Displacement of chiase			
	III. Separation of two bas IV. No division of centron			
	The correct option is	lere		
	a) II and III	b) II and IV	c) III and IV	d) I and III
89.		atements about colchicine	cj mana iv	a) i ana m
07.	•		doubling the chromosome	number
			_	orticulture and agricultural
	plants			
	-	given above is/are correct?	?	
	a) Only I	b) Only II	c) Both I and II	d) None of these
90.	Separation of linked gene	· ·	2	2
	a) Linkage	b) Segregation	c) Crossing over	d) Genetic mutation
91.	Sequence of four phases of	of cell cycle is		
	a) $G_1 \rightarrow S \rightarrow G_2 \rightarrow M$			
	b) $G_1 \rightarrow G_2 \rightarrow S \rightarrow M$			
	c) $S \rightarrow G_1 \rightarrow G_2 \rightarrow M$			
	d) $M \rightarrow G_1 \rightarrow G_2 \rightarrow S$			
92.	The division of the cytopl	asm is termed as		
	a) Karyokinesis	b) Mitosis	c) Cytokinesis	d) Meiosis
93.		eed to mitosis without inte	erruption	
	a) Once it had started the	1		
	b) Once it had entered the			
	c) At anytime during cell	division		
04	d) None of the above			
94.		metaphase chromosome re	•	
	b) Homologous chromoso	nes to be separated at anap	mase	
		mosomes joined at the cen	tromere	
		chromosomes joined at the		
95			, chromosome material rem	ains in the form of verv
<i>,</i> 0.	loosely coiled threads cal			iums in the form of very
	a) Chromosome	b) Chromatin	c) Chromatid	d) Microtubules
96.	Which is synthesized in G	•	-)	.,
	a) DNA polymerase	b) Histones	c) Nucleolar DNA	d) Tubulin protein
97.			ss than five in a chromoson	
	a) Chromatid	b) Chromomere	c) Centromere	d) Telomere
98.	Longest phase of meiosis	-		
	a) Prophase-I	b) Prophase-II	c) Anaphase-I	d) Metaphase-II
99.	Mitotic stages are not obs			
	a) Cosmarium	b) E. coli	c) Saccharomyces	d) Chlorella
100	. Crossing over is also an e	nzyme mediated process a	nd the enzyme involved is	called
	a) Ligase	b) Polymerase	c) Recombinase	d) Endonuclease

		ponds to Mendel's law of inde	-
a) Anaphase-II	<i>y</i> 1	y	d) Telophase-I
	of mitosis is known for occ		
a) Metaphase	b) Telophase	c) Anaphase	d) None of these
103. Characteristic	of meiosis is		
a) Two nuclear	r and two chromosome div	visions	
b) Two nuclear	r and one chromosome div	vision	
c) One nuclear	and two chromosome div	isions	
d) One nuclear	and one chromosome div	ision	
104. See the diagrar	m carefully and sequential	ly arrange the steps of amitosi	is given below?
Nucleus	Constriction		
Parent cell P	arent cell dividing		
I The construct	tion appears in the systems	acm.	
	tion appears in the cytopla		aiddla
		lops a constriction round its n	
	• •		ucleus into two daughter nuclei
		the parent cell into two daugh	ter cells, each with a nucleus
	ing correct sequence of ev		
		\rightarrow IV c) II \rightarrow I \rightarrow III \rightarrow	
	=	uired to produce 256 cells from	-
a) 10	b) 12	c) 6	d) 8
106. The second che	eck point in cell cycle occu		
a) G ₀ – G ₁	b) G ₁ – G ₂	c) G ₁ –S	d) G ₂ –M
107. The M-phase st	tarts with theA, corres	sponding to the separation of c	laughter chromosomes, known as
B and usual	lly ends with division of cy	toplasm which is known as	С
Identify A-C to	complete the given NCER'	T statement	
a) A-cell division	on; B-cytokinesis; C-karyo	kinesis	
b) A-nuclear di	ivision; B-karyokinesis; C-	cytokinesis	
c) A-cell division	on; B-karyokinesis; C-cyto	kinesis	
d) A-nuclear di	ivision; B-cytokinesis; C-ka	aryokinesis	
-	n in a cell cycle occurs dur		
a) G ₁ -phase	b) S-phase	c) G ₂ -phase	d) M-phase
	, i		somes will the cell have at G ₁ -phase
of cell cycle?			
a) 28	b) 14	c) 7	d) 21
-	,	,	each other in cell division, this
event is called		ies change then material with	
	ming b) Crossing or	a) Sumanaia	d) Durad forming
a) Bivalent for	e , e		d) Dyad forming
		ble for the appearance of Lamp	
a) Meiotic prop	· · ·		
	=	_	stage of a type of cell division.
Identify the sta	age and choose the correct	coption?	
X-	XX		


a) Prophase-I during me	eiosis	b) Prophase-II during me	eiosis
c) Prophase during mei	osis	d) Both prophase and m	etaphase of mitosis
113. Chiasmata are most app	propriately observed in mei	osis during	
a) Diakinesis	b) Diplotene	c) Metaphase-II	d) Pachytene
114. In which of the following	g stages, the chromosome i	s single thin and like long th	read?
a) Leptotene	b) Zygotene	c) Pachytene	d) Diakinesis
115. From the following, ider	ntify the two correct statem	ents with reference to meio	osis
I. Bead like reference to	meiosis		
II. Displacement of chais	smata occurs in diakinesic		
III. Separation of two ba	sic sets of chromosomes		
IV. No division of centro	omere		
The correct option is			
a) II, III	b) II, IV	c) III, IV	d) I, III
116. Which of the following s	stage of cell cycle is known	as quiescent stage?	
a) G ₁ -phase	b) S-phase	c) G ₀ -phase	d) G ₂ -phase
117. At which stage of mitosi	s, chromatids separated an	d passes to different poles?	
a) Prophase			
b) Metaphase			
c) Anaphase			
d) Telophase			
118. When dividing cells are	examined under a light mic	croscope, chromosomes bec	ome visible in
a) Interphase	b) S-phase	c) Prophase	d) G ₁ -phase
119. Phenomenon of crossing	g over in diploid organisms	is responsible for	
a) Linkages between ge	nes		
b) Recombination betwo	een linked genes		
c) Segregation between	genes		
d) Dominance of gene			
120. In G_1 -phase of cell cycle	, what would be the change	in DNA content of the cell?	
a) DNA content increase	es to double	b) DNA content gets redu	uced
c) Four fold increase of	DNA content	d) No change in DNA con	itent
121. What is the approximate	e duration of cell cycle for a	mammalian cell?	
a) 90 min	b) 24 hrs	c) 24 days	d) 12 hrs
122. Karyokinesis refers to the	he division of		
a) The cytoplasm		b) The nucleus	
c) Cytoplasm and nucle	us	d) all constituents of the	cell
123. Which of the following s	statements are correct for c	ell cycle?	
I. Cell cycle is the seque	nce of events involving grow	wth and division of a cell fro	om the time of its formation
to its own division into	daughter cells		
II. Cell growth (in terms	of cytoplasmic increase) is	a continuous process	
III. DNA synthesis occur	s only during one specific s	tage in the cell cycle	
IV. The replicated chron	nosomes (DNA) are distrib	uted to daughter nuclei dur	ing cell division
a) I and III	b) I and II	c) III and IV	d) I, II, III and IV
124. Which of the following s	statement is true for cells in	G ₀ stage of cell cycle?	
a) Cells in G ₀ stage are r	netabolically more active		
b) Cells are metabolicall	y inactive		
c) Cells are metabolicall	y active but no longer proli	ferate in normal condition	
d) None of the above			
125. In which stage of the first	st meiotic division, two sist	er chromatids are formed?	
a) Leptotene	b) Zygotene	c) Pachytene	d) Diplotene
126. Synapsis occurs in	phase of meiosis.		

a) Zygotene			
b) Diplotene			
c) Pachytene			
d) Leptotene			
127. Mitosis usually resu	lts in the		
a) Production of dip	loid daughter cells	b) Growth of multicell	ular organisms
c) Cell repair		d) All of the above	
128. Which of the followi	ng type of cell cycle is known	=	
a) Amitosis	b) Mitosis	c) Meiosis	d) None of the above
	egration of nuclear envelope		
a) Start of prophase		b) Start of metaphase	
c) End of anaphase of		d) Start of telophase o	fmitosis
	rranged along the equator du	-	
a) Prophase	b) Metaphase	c) Anaphase	d) Telophase
131. What is the average	b) 3 hr to 5 hr	c) 30 min to 3 hr	d) 2 hr to 3 hr
a) 3 min 30 min 132 Which of the followi	ng stage of mitosis follows th	,	5
a) Prophase	b) Metaphase	c) Anaphase	d) Telophase
<i>,</i> 1	e are controlled by proteins,	<i>,</i> .	uj reiopilase
	ulatory mechanisms, called .		bout cell division.
-	c point, calledD is respon		
	olete the given statements (I-		2 · · · · F · · · · ·
	- ,	•	ooints; C-mitotic cyclin, D-CdKs
(Cm)			· · · · · ·
c) A-mitotic cyclin (Cm), B-CdKs; C-check points,	, D- d) A-mitotic cyclin (Cr	n), B-cyclins; C-check points,
Cyclin		D-CdKs	
134. When synapsis is co	mplete all along the chromos	some, the cell is said to have	e entered a stage called
a) Zygotene	b) Pachytene	c) Diplotene	d) Diakinesis
			romosomes. During 'XX' phase,
=	eaks down and spindles form	is at opposite ends of the co	ell
Identify 'XX'			
a) Interphase	b) Anaphase	c) Telophase	d) Prophase
	ng CdKs and cyclins comes u		
a) $CdK_4/Cyclin B$	b) CdK ₂ / Cyclin B	c) CdK ₆ / Cyclin B	d) CdK ₂ / Cyclin D
137. Mitosis is divided in		a) Four stages	d) Siy atagaa
a) Five stages	b) Three stages ng statements (events) is/ar	c) Four stages	d) Six stages
a) Nucleolus, GB and		e ti de loi mitotic telophase	
-	ound each chromosomes clus	stors	
	somes cluster at opposite po		v as discrete elements
d) All of the above			
-	ven statements, and choose	the correct option	
	les that extend from the two	=	calledA
_			ese two copies are calledB
III. In 'X' phase, the p	aired chromosomes separat	e and begin moving to opp	osite ends of the cell. This 'X' is
calledC			
a) A-kinetochore fib	res; B-chromatids; C-metaph	ase	
b) A-polar fibres; B-	homologous chromosomes; (C-Prophase	
	sister chromatids; C-anaphas	se	
d) A-kinetochore fib	res; B-asters; C-anaphase		

153. Two basic stages of cell cycle are	
a) Interphase and M-phase/divisional phase	
b) Karyokinesis and cytokinesis	
c) Prophase, metaphase, anaphase and telophase	
d) G ₁ , S and G ₂ phases	
154. Which of the following statements are correct for G ₁ -phase?	
I. It is the last substage of interphase	
II. Cell organelles do not increase in number	
III. Both cell and nucleus grow in size	
IV. It synthesizes RNAs, proteins and other biochemical for cell gr	rowth and subsequent replication of DNA
Choose the correct option	
a) I and II b) II and IV c) I and III	d) II and III
155. From the following identify the two correct statements with refer	rence to meiosis
I. Bead-like structures are absent on chromosomes.	
II. Displacement of chiasmata occurs in diakinesis.	
III. Separation of two basic sets of chromosomes.	
IV. No division of centromere.	
a) II,III b) II,IV c) III,IV	d) I,III
156. The S-phase of cell cycle is characterized by	
a) Duplication of chromosome	
b) Shortening of chromosome	
c) Duplication of DNA d) Duplication of contrible	
d) Duplication of centriole	
157. Congression is a phenomenon ofa) Movement of sister chromatids towards the poles	
b) Pairing of homologous chromosomes	
c) Separation of paired chromosomes	
d) Bringing the chromosomes on equator of spindle apparatus	
158. Find the correctly matched pairs and choose the correct option	
I. Leptotene – The chromosomes become invisible	
II. Zygotene – Pairing of homologous chromosomes	
III. Pachytene – Dissolution of the synaptonemal complex takes pl	lace
IV. Diplotene – Bivalent chromosomes appear as tetrads	
V. Diakinesis – Terminalisation of chiasmata takes place	
a) I and II b) II and IV c) II and V	d) II and III
159. The number of DNA strands in chromosome at G_2 -stage is	-
a) One b) Two c) Four	d) Eight
160. Meiosis occurs in which of the following cells?	
a) Sperm cells b) Unicellular organisms c) Liver cell	ls d) All of these
161. Identify the following figures $(A - D)$ and choose the correct opti	ion
A B C D	
a) A-Metaphase-II, B-Anaphase-I, C-Prophase-I, D-Anaphase-II	
b) A-Prophase-I, B-Anaphase-I, C-Interphase, D-Metaphase-I	
c) A-Metaphase-I, B-Anaphase-I, C-Prophase-I, D-Anaphase-II	
d) A-Prophase-II, B-Anaphase-I, C-Interphase, D-Metaphase-II	
162. During the G ₁ -phase of cell division	
a) RNA and proteins are synthesized	

- b) DNA and proteins are synthesized
- c) Cell prepares for M-phase
- d) Cell undergoes duplication
- 163. Study the diagram showing meiosis carefully and choose the correct options for A E

- a) A Tetrad, B Bivalent, C Zygotene stage, D Sister chromatids, E Non-sister chromatids
- b) A –Bivalent, B –Tetrad, C –Pachytene stage, D –Crossing over, E –Non-sister chromatids
- c) A –Bivalent, B –Tetrad, C –Pachytene stage, D-Non-Sister chromatids, E-Sister chromatids
- d) A Bivalent, B Tetrad, C Pachytene stage, D Sister chromatids, E Non-Sister chromatids
- 164. In ...A.... phase, there is synthesis of RNAs and proteins that are needed for cell growth and replication of DNA. While it is ...B... phase, where synthesis of protein occur that is needed for spindle formation and mitosis to continue.

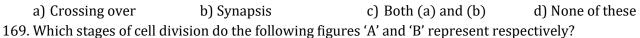
c) A-G; B-G₂

d) None of these

Identify A and B to complete the given statement

- a) A-G; B-S b) A-G₂; B-S
- 165. Interphase nucleus is enclosed by
 - a) Non-porous nuclear membrane

b) Porous double nuclear membrane

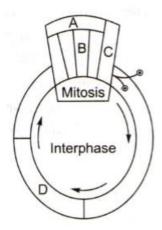

- c) Non-porous double discontinuous nuclear membrane
- d) A single porous unit membrane
- 166. Read the following statements and select the correct option
 - I. M-phase represents the phase when the actual cell division or mitosis occurs
 - II. Interphase represents the phase between two successive M-phases

III. In the 24 hrs average duration of cell cycle of a human cell, cell division proper lasts for only about an hour

IV. The M-phase lasts more than 95% of the duration of cell cycle

a) I, II and III	b) II and IV	c) II, III and IV	d) I and IV
------------------	--------------	-------------------	-------------

- 167. What change would occur in DNA content, during S-phase?
 - a) No change
 - b) The amount of DNA per cell doubles
 - c) The amount of DNA per cell increase four folds
 - d) The amount of DNA per cell decreases
- 168. In meiosis, the daughter cells are not similar to that of parent because of



A	B			
a) Metaphase	- Telophase			
b) Telophase	- Metaphase			
c) Late anaphase	- Prophase			
d) Prophase	- Anaphase			
170. During cell cycle, R	RNA and non-histone protein	ns are synthesized in		
a) S-phase	b) G ₀ -phase	c) G ₁ -phase	d) M-phase	
			P	

171. Alleles of different genes that are on the same chromosome may occasionally separated by a phenomenon known as

- a) Pleiotropy
- b) Epistasis
- c) Continuous variation
- d) Crossing over
- 172. In meiosis, division is
 - a) I reductional and II equational
 - b) I equational and II reductional
 - c) Both reductional
 - d) Both equational
- 173. Cells in G_0 -phase of cell cycle
 - a) Exit cell cycle
 - b) Enter cell cycle
 - c) Suspend cell cycle
 - d) Terminate cell cycle

174. Given below is a schematic break-up of the phases/stages of cell cycle

Which one of the following is the correct indication of the stage/phase in the cell cycle?

a) B-Metaphase b) C-Karyokinesis c) D-Synthetic phase d) A-Cytokinesis

- 175. Choose the correct answer for the statements given below
 - I. Protein involved in the shortening and thickening of chromosome fibres

II. The name of early prophase when elongated chromosomes occur in overlapped condition like a ball of wool without their ends being visible

III. Each group of astral rays along with its centriole pair

IV. Name the narrow point which is responsible for attaching two sister chromatids to each other

- a) I-Codensins, II-Aster, III-Spirme stage, IV-Kinetochore
- b) I-Codensins, II-Aster, III-Spirme stage, IV-Centromere
- c) I-Codensins, II-Spirme stage, III-Aster, IV-Centromere
- d) I-Tubulins, II-Spirme stage, III-Amphiaster, IV-Kinetochore

176. If you are provided with root-tips of onion in your class and are asked to count the chromosomes, which of the following stages can you most conveniently look into?

a) Metaphase b) Telophase c) Anaphase

177. In cell cycle, during which phase chromosomes are arranged at equatorial plate?

a) Metaphase b) Anaphase c) Telophase d) Prophase

178. Meiosis in a plant occurs when there is a change

- a) From gametophyte to sporophyte
- b) From sporophyte to gametophyte

c) From gametophyte to gametophyte

d) Prophase

d) From sporophyte to sporophyte		
179. When number of chromosomes is already reduced	to half in the first reductio	nal division of meiosis, what
is the necessity of second meiotic division?		
a) The division is required for the formation of fou	r gametes	
b) Divisions ensures equal distribution of haploid	chromosomes	
c) Division ensures equal distribution of genes on	chromosomes	
d) Division is required for segregation of replicated	d chromosomes	
180. Select the correct option		
a) Division of the cytoplasm occurs before the divi	sion of the nucleus	
b) Division of the nucleus occurs before the divisio	n of the cytoplasm	
c) Both the division of the nucleus and cytoplasm of	occurs at the same time	
d) None of the above		
181. During meiotic division, the		
a) Homologous chromosomes are separated		
b) The linkage is disturbed		
c) The homologous chromosomes do not segregate	9	
d) All of the above		
182. Recombination is involved in the process of		
a) Cytokinesis		
b) Spindle formation		
c) Crossing over		
d) Chromosome duplication		
183. A diploid living organism develops from zygote by	which type of the following	g repeated cell divisions?
a) Meiosis b) Amitosis	c) Mitosis	d) Segmentation
184. Pick out the correct statements.		
I.Synapsis of homologous chromosomes takes plac	e during prophase-I of mei	osis.
II.Division of centromeres takes place during anap	hase-I of meiosis.	
III.Spindle fibres disappear completely in telophas	e of mitosis.	
IV.Nucleoli reappear at telophase-I of meiosis.		
a) I only b) III only	c) I and II only	d) I, III and IV only
185. An egg cell has 5pico gram of DNA in its nucleus. H	ow much amount of DNA v	vill be, in this animal, at the
end of G ₂ -phase of mitosis?		
a) 2.5pico gram b) 5pico gram	c) 5 g	d) 20pico gram
186. The term 'meiosis' was given by		
a) Rusk b) Flemming	c) Johannsen	d) Former and Moore
187. After the separation of centromeres during mitosis	s, the chromatids move tow	rards opposite poles of the
spindle. Name the term used for these chromatids		
a) Daughter chromosomes	b) Kinetochores	
c) Half spindles	d) Centrosomes	
188. In which phase, proteins for spindle fibre are synth	nesized?	
a) G_1 -phase b) G_2 -phase	c) S-phase	d) Anaphase
189. In meiosis-I, a bivalent is an association of		
a) Four chromatids and four centromeres		
b) Two chromatids and two centromeres		
c) Two chromatids and one centromeres		
d) Four chromatids and two centromeres		
190. Colchicine arrests spindle at		
a) Anaphase b) Prophase	c) Telophase	d) Metaphase
191. How many chromosomes will the cell the cell have	at G ₁ , after S and after M-p	hase respectively, if it has 14
chromosomes at interphase?		

a) 14,14,7	b) 14,14,14	c) 7,7,7	d) 7,14,14
192. Chiasmata are for	,		
a) Crossing over o	f same part between homolo	gous chromosomes	
b) Crossing over o	f same part between non-ho	mologous chromosomes	S
, ,	nomologous and non-homolo		
	art of chromosomes		
193. Which of the follo	wing shows diplotene stage o	of cell cycle?	
a) Separation of s	ynapsed homologous chromo	osomes except at the site	e of cross overs
b) Degenecation o	f nucleolus		
	towards cheromosome ends	S	
d) All of the above	9		
194. Given diagram rep	presents the events occurring	g in cell cycle. Identify A,	B, C and D and select the correct
option			
OF			
al l	c \\		
La tokinesis			
Telophase			
Z Anatalista			
These or			
A B C D			
a) G_0 G_1 S G_2	b) $G_1 G_0 S G_2$	c) S G_0 G_1 G_2	d) G_1 S G_2 G_0
195. In the somatic cell	cycle		
a) In G ₁ -phase, DN	IA content is double the amo	unt of DNA present in th	ne original cell
, .	n takes place in S-phase		
	ase is followed by a long mit	otic phase	
d) G ₂ -phase follov	•		
	es in between the G_1 and G_2]		
a) M-phase	b) G ₀ -phase	c) S-phase	d) Interphase
	-		nd the formation of chiasmata
	he variation of progeny occu		omologous chromosomes mix
c) Reciprocal exch	nange of chromosomal sectio	ns d) All of the abov	/e
occurs			
=	ss by which eukaryotic cells		
a) Grow			
b) Get specialized	in structure		
c) Multiply			
d) Expose the gen	es		
199. Phragmoplast is			
	ytoplasm of dividing cells	1	
	ed by vesicles ER and dictyos		
	ed by ER, dictyosomes, secret	tory vesicles and spindle	e fibre
d) None of the abo			
200. Mitosis is characte	=		
a) Reduction divis		b) Equal division	
c) Both (a) and (b		d) Absence of spi	inule formation
	t sequence of two main even	IS III IIIIUOSIS	
a) karyokinesis fo	llowed by cytokinesis		
			Page 17

 d) Cytokinesis followed 202. What is the correct sequence Also work out the proce V. Homologous chromosomes gather VII. Chromosomes gather VIII. Homologous chromosomes VIII. Homologous VIII. H	d by separation of the daug by separation of the daug ence of the steps given he ss depicted in the steps? osomes move toward oppo er together at the two poles osomes pair and exchanges romosomes align on a cent parate completely.	nter cells re? osite poles of the cell; chro s of the cell and the nucle s segments. ral plate.	ar membrances reform.
2	is III \rightarrow IV \rightarrow I \rightarrow II \rightarrow V at	-	
	is II \rightarrow I \rightarrow V \rightarrow IV \rightarrow III a		
-	is $IV \rightarrow I \rightarrow III \rightarrow II \rightarrow V$ and it is $IV \rightarrow V \rightarrow V$ and it is $V \rightarrow V \rightarrow V$ and it is $V \rightarrow V \rightarrow V$.	-	
	$is II \to V \to IV \to I \to III a$	=	
203. What is the nature of cell			
a) Haploid	b) Diploid	c) Tetrad	d) None of these
204. Significance of meiosis l			
,	some number to one half ncy of chromosome numbe	or during covual roproduc	rtion
c) Production of genetic	-	er during sexual reproduc	
d) All of the above	variability		
	curs during the anaphase of	of mitosis, which brings a	bout the equal distribution of
chromosomes is	curs during the anaphase (of finites is, which of figs a	bout the equal distribution of
a) Replication of the ger	netic material		
b) Splitting of the chrom			
c) Splitting of the centro			
d) Condensation of the c			
206. Chiasma shows the sites			
a) Spindle formation	b) Synapsis	c) Crossing over	d) None of these
207. What is the function of c		cj ci ossing over	a) None of these
a) Cell division			
b) Cell plate formation			
c) Cell differentiation			
d) Cell wall formation			
208. The cell cycle of yeast ta	kes about		
a) 24 hrs	b) 60 min	c) 30 min	d) 90 min
209. What is not seen during	•	<i>cj co</i> min	
a) Spindle fibre			
b) Chromosomes mover	nent		
c) Disappearance of nuc			
d) Synapsis			
210. In which phase, DNA con	ntent will be doubled?		
a) Interphase	b) Anaphase	c) Prophase	d) Telophase
211. At which stage of cell cy	, <u>.</u>		5
a) Anaphase	b) Prophase	c) Telophase	d) Interphase
212. Arrange the following ev			
X. Terminalization		-	
XI. Crossing over			
XII. Synapsis			
XIII. Disjunction of ge	enomes		

The correct sequence is								
a) 4, 3, 2, 1 b) 3, 2, 1, 4	c) 2, 1, 4, 3	d) 1, 4, 3, 2						
213. Spindle fibre is made up of	0) 2) 1) 1) 0	() 1) 1) 0) =						
a) Tubulin								
b) Humulin								
c) Intermediate filament								
d) Flagellin								
214. Diakinesis is marked by								
a) Terminalisation of chiasmata	b) Degeneration of nucle	olus						
c) Chiasmata shift towards chromosome ends	d) All of the above							
215. Cleavage is a unique form of mitotic cell division in	which							
a) There is no growth of cells								
b) The nucleus does not participate								
c) No spindle developers to guide the cells								
d) The plasma membranes of daughter cells do not	separate							
216. In plant cell has 12 chromosomes at the end of mite	osis. How many chromosom	hes would it have in the G_2 -						
phase of its next cell cycle?								
a) 6 b) 8	c) 12	d) 24						
217. Meiosis occurs in organism during								
a) Vegetative reproduction	b) Sexual reproduction							
c) Both (a) and (b)	d) None of these							
218. Chromosome reaches their respective poles in which								
a) Cytokinesis b) Interphase	c) S-phase	d) Telophase						
219. Replication of centriole occurs during								
a) Interphase b) Prophase	c) Late prophase	d) Late telophase						
220. Genetic recombination is due to								
a) Fertilization and meiosis								
b) Mitosis and meiosisc) Fertilization and mitosis								
d) None of these								
221. Pick out the correct statements.								
I.Mitosis takes place in the somatic cells and meiosi	s takes place in the germ co	alle						
II.During mitosis, the DNA replicates once for one c								
two cell divisions.		ine Divisie plicates twice for						
III.Mitosis and meiosis occur both in sexually and a	sexually reproducing organ	iisms.						
a) I only b) II only	c) III only	d) I and II only						
222. Chromatid formation takes place in	<i>y</i>	, ,						
a) S-phase b) Metaphase	c) G ₁ -phase	d) G ₂ -phase						
223. 56 cells are produced in meiosis where first divisio	n is							
a) Equal								
b) Reduction								
c) Mitosis								
d) None of these								
224. A cell in post reproductive stage remains in								
a) G ₂ -phase b) S-phase	c) G ₁ -phase	d) M-phase						
225. Most cytogenic activities occur during								
a) Interphase b) Telophase	c) Prophase	d) Anaphase						
226. The term, mitosis was coined by								
a) Flemming b) Strasburger	c) Remak	d) Moore						
227. Which of the following character is related with tele	ophase?							

- a) Formation of nuclear membrane
- b) Formation of nucleolus
- c) Elongation of chromosome
- d) Formation of two daughter nuclei

NEET BIOLOGY

CELL CYCLE AND CELL DIVISION

	: ANSWER KEY :														
1)	С	2)	а	3)	d	4)	Ċ	117)	С	118)	с	119)	b	120)	d
5)	a	2) 6)	a	3) 7)	b	8)	ċ	-	b	122)	b	123)	d	120)	c c
9)	C C	10)	d	, j 11)	b	12)	t t		c	122)	a	123)	a	124)	b
13)	a	14)	a	15)	b	16)	-	129	b	130)	b	131)	C C	132)	a
17)	c	18)	C C	19)	d	20)	c		a	130)	b	135)	d	136)	b
21)	b	22)	b	23)	a	20) 24)	ł		C C	131)	d	139)	C C	130) 140)	c
25)	b	26)	d	23) 27)	a	28)	a		c	133) 142)	b	143)	d	144)	c c
29)	a	<u> </u>	d	31)	b	32)	a		a	146)	a	147)	b	148)	a
33)	d	34)	b	35)	a	36)	t t		c	150)	a	151)	c	152)	d
37)	d	38)	b	39)	c	40)	ċ		a	154)	b	155)	a	156)	c
41)	a	42)	a	43)	d	44)	ł		d	158)	c	159)	c	160)	a
45)	b	46)	b	47)	b	48)	a		b	162)	a	163)	a	164)	c
49)	a	50)	b	51)	d	52)	C		b	166)	a	167)	b	168)	a
53)	a	54)	c	55)	a	56)	c		c	170)	c	171)	d	172)	b
57)	d	58)	c	59)	c	60)	ċ		c	174)	c	175)	c	176)	a
61)	C	62)	a	63)	d	64)	а	177)	a) 178)	b	179)	d	180)	b
65)	a	66)	c	67)	a	68)	a		a	182)	C	183)	C	184)	d
69)	d	70)	d	71)	С	72)	Ċ	-	d	186)	d	187)	a	188)	b
73)	С	74)	b	, 75)	С	, 76)	a		d	190)	d	191)	b	192)	а
77)	d	, 78)	a	79)	d	80)	b		d	194)	a	195)	b	196)	С
, 81)	С	82)	b	83)	d	84)	Ċ		a	198)	С	199)	b	200)	b
85)	С	86)	d	87)	b	88)	а		а	202)	а	203)	а	204)	d
89)	С	90)	с	91)	а	92)	C	205)	С	206)	С	207)	b	208)	d
93)	а	94)	а	95)	b	96)	а		d	210)	а	211)	а	212)	b
97)	d	98)	а	99)	b	100)	C	213)	а	214)	d	215)	С	216)	С
101)	b	102)	b	103)	b	104)	Ċ	217)	b	218)	d	219)	а	220)	а
105)	d	106)	d	107)	b	108)	Ł	221)	а	222)	а	223)	b	224)	С
109)	b	110)	а	111)	а	112)	а		а	226)	а	227)	d	-	
113)	b	114)	а	115)	d	116)	C	-		2		-			
-				-		-									

NEET BIOLOGY

CELL CYCLE AND CELL DIVISION

: HINTS AND SOLUTIONS :

1 (c)

Meiosis first is allowed by second meiotic division, which is essentially a mitotic division and is referred as mitotic. In anaphase-II of meiosis-II, the chromosome and centromere divide. The sister chromatids separate and move towards opposite pole.

2 **(a)**

In meiosis (meiotic-I), chromosome number becomes half to that of parent chromosome.

3 **(d)**

Plant cytokinesis usually occurs by cell plate method. The spindle usually pesists during cytokinesis. Central part of spindle grows in size and forms an interdigited complex called phragmoplast. Cell plate grows centrifugally

4 **(d)**

A-G₁, B-S, C-G₂.

Post reproductive stage of a cell includes cell growth. The term cell growth is used in the contexts of cell development and cell division. As we are concerned about growth (development) only, it refers to the growth of cell that is to increase in cytoplasmic and organelle volume that is in G_1 -phase

S-phase is the sub-phase between G_1 -phase and G_2 -phase, during which DNA synthesis or replication takes place.

In animal cells, during the S-phase, DNA replication begins in the nucleus and the centriole 9 duplication in the cytoplasm. The amount of DNA per cell doubles in the nucleus. If the initial amount of DNA is denoted as 2C, then it increases to 4C. However, there is no increase in the chromosome number

5 **(a)**

S or **synthetic** phase marks the period during which DNA synthesis or replication takes place. During this phase, the amount of DNA per cell doubles.

The second stage of prophase-I is called zygotene. During this stage, chromosomes start pairing together and this process of association is called **synapsis**. Such paired chromosomes are called **homologous chromosomes**. Synapsis is accompanied by the formation of a complex structure called **synaptonemal complex**.

6 **(a)**

Mitosis is one of the types of cell division, which helps in regeneration. Because it keeps all the somatic cells of an organism genetically similar, so that they are able to regenerate a part or whole of the organism

7 **(b)**

During meiosis, four haploid cells are produced by reductional division from a single diploid cell. Parent cell contains replicated chromosomes, but the daughter cells contains unreplicated chromosomes

8 **(d)**

The interphase, as called the resting phase, is the time during which the cell is preparing for division by undergoing both cell growth and DNA replication.

It is the phase between two successive M-phases *The interphase is divided into three further classes*

 G_1 -phase (Gap 1), S-phase (synthesis) and G_2 -phase (Gap 2)

(c)

Crossing over occurs during **pachytene** or **thick thread** or **pachynema** substage of prophase-I of meiosis. During this stage, an exchange of portions of chromatids between homologous chromosomes occur. At chiasma, the chromatids break rejoin in such a way that sections are exchanged.

10 **(d)**

Out of two alleles present at the same locus of two chromosomes of a homologous pair, one is

transmitted to a gamete as the later receive one chromosome of a homologous pair.

11 **(b)**

In plant cells, cytokinesis occurs by cell plate formation. A number of elements called phragmoplasts are derived from ER and Golgi body. These elements line up at equator during anaphase and later fuse to form cell plate.

12 **(b)**

During metaphase, the nuclear envelope disintegrates and the chromosomes are spread through the cytoplasm of the cell. Condensation of chromosomes is completed and it can be observed under the microscope. At this stage, the morphology as well as the number of chromosomes can be easily studied

13 **(a)**

Interphase has variable duration. During this period, the DNA of chromosomes replicates. Chromosome material is in the form of very loosely coiled threads called chromatin. Centrioles already have replicated

14 **(a)**

During **anaphase-I**, the number of chromosomes become half.

15 **(b)**

G₀-phase.

Some cells that do not divide further, exit G_1 phase and enter an inactive stage called quiescent stage (G_0) of the cell cycle. Cells in this stage remains metabolically active but no longer proliferate unless called on to do so depending on the requirement of the organism

16 **(d)**

The interphase is also called the resting phase. It is the time during which the cell gets prepared for division by undergoing both cell and DNA replication in an orderly manner

17 **(c)**

The cells, which do not divide further, do not proceed beyond the G_1 -phase and start undergoing differentiation into specific type are said to be in G_0 -phase.

18 **(c)**

Division of **cyptoplasm** is called cytokinesis (Gr. *kitos*=cell; **kinesis**=movement).

19 **(d)**

At the end of prophase, several characteristic events can be observed. Chromosomal material condenses to form compact mitotic chromosomes. 25 Two chromatids attach together to form chromosomes

Assembly of mitotic spindle is initiated by, microtubules (proteinaceous components) of the cell cytoplasm. When observed under the microscope cells at the last stage of prophase, do not shows cell organelles like, Golgi complexes, endoplasmic reticulum, nucleolus and the nuclear envelope

20 <u>(</u>c)

Prophase-I of	Prophase of Mitosis
Meiosis	-
Prophase-I is very	Prophase is
long and elaborate,	relatively very
comprising 5 sub-	short and simple
phases	
Prophase	Prophase-I
chromosomes	chromosome do
appear double	not look double in
from the very start	the beginning
There is no pairing	Homologous
of homologous	chromosomes pair
Chromosomes,	and often undergo
hence no chance of	crossing over in
crossing over	prophase-I

21 **(b)**

Mitosis was first observed by **Strasburger** and termed by **W Flemming**. During mitosis, chromosome number remain same in the daughter cells. During meiosis (reduction division), the chromosome number reduced to half in the daughter cells.

22 **(b)**

Telophase is the reverse stage of prophase. During this phase, the cytoplasmic viscosity decreases and the two chromosome groups reorganize themselves into nuclei. A nucleae envelope appears outside the nucleoplasm collected in the area of chromatin. Spindle fibres disappear around the poles and Golgi complex and endoplasmic reticulum are reformed

23 **(a)**

During S-phase, there is no increase in the chromosomes number. If the cell has diploid or 2n number of chromosomes at G_1 , even after S-phase the number of chromosomes remains the same, *i.e., 2n*

24 **(b)**

The correct sequence is

Synapsis \rightarrow crossing over \rightarrow terminalisation \rightarrow disjunction of genomes

(b)

The interphase takes approximate 75-95% of the entire generation time

26 **(d)**

The paternal and maternal chromosomes of each homologous pair segregates during anaphase-I. Although, both (maternal and paternal) chromosomes of a homologous pair have the genes for the same traits, either chromosome of a pair may carry different alleles of the same genes. Therefore, in anaphase-I, homologous chromosomes introduces genetic variability

27 **(a)**

A-Animals; B-Plants

28 **(a)**

At the onset of anaphase, each chromosome arranged at the metaphase plate is split simultaneously and the two daughter chromatids, now referred to as chromosomes of the future daughter nuclei, begin their migration towards the two opposite poles. As each chromosome moves away from the equatorial plate, the centromere of each chromosome is towards the pole and hence at the leading edge, with the arms of the chromosome trailing behind. *Thus, anaphase stage is chracterised by the following key events*

- 1. Centromeres split and chromatids separate
- 2. Chromatids move to opposite poles

29 **(a)**

After meiosis, the chromosomes get reduce by half, producing haploid cells. The sperm and the egg are haploid cells and when they fuse during fertilization, they produce diploid original

30 **(d)**

The phase between two successive M-phases is called interphase.

The M-phase represents the phase when the actual cell division or mitosis occurs and the interphase represents the phase between two successive M-phases. It is significant to note that in the 24 hour average duration of cell cycle of a human cell, cell division proper lasts for only about an hour. The interphase lasts more than 95% of the duration of cell cycle

31 **(b)**

Meiosis start with one diploid containing copies of chromosome, one from mother and one from father. The cell divides twice, producing up to four 39

haploid cells containing one copy of each chromosome

32 **(a)**

Interkinesis is the transition stage between meiosis-I and meiosis-II.

33 **(d)**

In zygotene of prophase-I, homologous chromosomes pair up. This process is called **synapsis**. One chromosome of the pair is from the male parent and other from the female parent.

34 **(b)**

In metaphase, chromosomes are shortest and show maximum condensation. Chromosomes are arranged at equatorial metaphasic plate. Structure, size and number of chromosomes are best studied at metaphase.

35 **(a)**

Microtubules are mainly composed of tubulin protein. These are found only in eukaryotic cellular structures like cilia, flagella, centriole, basal body, spindle fibre, etc.

36 **(b)**

 G_1 -phase is called as pre-synthetic phase or postmitotic phase. It is the longest phase of cell cycle. In G_1 -phase, a cell has two options:

3. Continues cycle and enters S-phase

4. Stops cell cycle and enters G₀-phase for undergoing differentiation.

37 **(d)**

S-phase is the sub-phase between G_1 -phase and G_2 -phase, during which DNA synthesis or replication takes place.

In animal cells, during the S-phase, DNA replication begins in the nucleus and the centriole duplication in the cytoplasm. The amount of DNA per cell doubles in the nucleus. If the initial amount of DNA is denoted as 2C, then it increases to 4C. However, there is no increase in the chromosome number

38 **(b)**

Colchicine is an antimitotic drug (alkaloid) which is obtained from *Colchicum* (family-Liliaceae). It binds to one tubulin molecule and prevents its polymerization. The depolymerisation of tubulin result in disappearance of mitotic spindle blocking the cell's mitotic chromosomal division at metaphase and anaphase.

) (c)

Non-disjunction occurs when a pair of homologous chromosomes do not separate in meiosis but migrate to the same pole of the cell, resulting in an even number of chromosomes being present in the daughter cells.

40 **(d)**

A-G₀; B-M

41 **(a)**

Homologous chromosomes segregate when a cell undergoes meiosis.

42 **(a)**

Meiosis is a reductional division, in which the chromosome number is reduced to half. It was proposed by **Farmer** and **Moore**. It is found only in diploid germ cells and is main cause of variations. During meiosis, four daughter cells are formed from one cell.

43 **(d)**

Meiosis is a reductional division, in which chromosome number is reduced to half, *i. e*, haploid. It is generally observed in sex cells, *i. e.*, male and female gametes. In bryophyte or pteridophyte, meiosis occurs in generative cells like **spore mother cells**.

44 **(b)**

The process of crossing over takes place in pachytene stage of prophase-I of meiosis-I. In this process, some genes of two non-sister chromatids of a bivalent are exchanged.

45 **(b)**

Metaphase plate is the plane of alignment of the chromosomes at metaphase.

During metaphase, spindle fibres attach to kinetochores of chromosomes.

Chromosome are moved to spindle equator and get aligned along metaphase plate through spindle fibres to both poles

46 **(b)**

Cell cycle was described by **Howard** and **Pelc** in 1953. The sequence of events by which a cell duplicates its genome, synthesizes the other constituents of the cell and eventually divides into two daughter cells is termed as **cell cycle**

47 **(b)**

In animal cells, cytokinesis involves the contraction of the contractile ring of microfilaments.

48 **(a)**

In meiotic division metaphase-I spindle apparatus starts appearing and bivalents become attached

to spindle through centromeres. Bivalents then appear in the form of an equatorial plate due to the movement known as 'congression'.

49 **(a)**

Crossing over is a process that produces new combination of genes by interchanging of segments between nonl-sister chromatids of homologous chromosomes. It occur between homologous chromosomes at four stranded stage during pachytene of prophase-I of meiosis-I.

50 **(b)**

The cell cycle is divided into two basic phases Interphase and M-phase (mitotic phase). Interphase further divides into three phases: G_1 -phase, S-phase and G_2 -phase

51 **(d)**

Colchicine prevents spindle formation, which occurs during **metaphase** stage of cell division.

53 **(a)**

Kinetochores serve as the sites of attachment of spindle fibres to the chromosomes that are moved into position at the centre of the cell.

54 **(c)**

Cell division cannot be stopped in S-phase. The Sphase is the synthesis phase, in which the cell synthesises a replica of its genome, *i. e.*, DNA replication occurs which ultimately result in the duplication of chromosomal material.

55 **(a)**

As a result of meiosis, the gamete of AaBb will be AB, aB, Ab, ab.

56 **(c)**

The stage between two meiotic divisions is called **interkinesis**. It is generally short lived and is followed by prophase-II, a much simpler prophase than prophase-I of meiosis-I.

57 **(d)**

The number of different haploid cells arise by meiosis can be calculated by 2^n where, n=number of haploid chromosomes.

58 **(c)**

The cell cycle is controlled by enzymes like cyclin dependent kinases (CdKs). CdKs phosphorylate amino acids like serine and threonine which initiates or blocks the activities related to cell cycle. *The other check points involved in cell cycle are*

5. G_1 check point (Enter S or synthesis) is controlled by CdK₄/Cyclin D, CdK₆/Cyclin D

	6.	G_2 check point (Enter M or maturation promoting factor) by is controlled $CdK_2/cyclin B$		B. Telophase Chromosomes cluster at opposite spindle poles and their identify is lost as discrete elements
	7.	Metaphase check point is controlled by		Nuclear envelope assembles around the
F 0		cyclin B degradation		chromosome clusters
59	meiosi contair arms. (pachytene substage of prophase-I of s, the chromosomes are tetravalent <i>i. e.</i> , n two chromatids with each chromosome Crossing over during this substage, which es the exchange of segments between the		Nucleolus, Golgi complex and ER reform C. Interphase It is the duration which is a variable depending on the function of cell. Just before nuclear division, the DNA of chromosome replicates thus, it becomes doubled. During this phase, chromosome material is in the
	non-sis	ster chromatid of homologues.		form of very loosely coiled threads called
60	(d)			chromatin
	numbe	rine treatment doubles the chromosome	66	(c)
61	(c)	1.		During metaphase-I of meiosis, tetrads line up at the equator.
01		vtes, a special, extremely prolonged form of	67	(a)
	-	ene occurs, called dictyotene. The primary		M cdk cyclin activates anaphase promoting
	-	undergoes the first three substages of	60	complex.
		ase-I (laptotene, zygotene and pachytene) late foetal life.	68	(a) During cytokinesis in plant cells spindle fibres do
	_	ocess is then, suspended during diplotene		not degenerate and forms phragmoplast and cell
	-	uberty or thereafter. Therefore, dictyotene,		plate.
		or months or even years. Diplotene is also	69	(d)
62		as diplonema		During anaphase-I of meiosis, the sister
62	(a) During	mitosis, all the chromosomes behave	70	chromatids begin to move towards the poles. (d)
	-	ndently while during meiosis, homologous		Small disc-shaped structure at the surface of the
		osomes pair up through synapsis and form		centromeres are called kinetochores. These
		nts in zygotene substage of prophase-I, then		structures serve as the sites of attachment of
	-	ytene substage, crossing over occurs en homologous chromosomes and during		spindle fibres (formed by the spindle fibres) to the chromosomes that are moved into position at
		ene substage of prophase-I of meiosis		the centre of the cell
		a formation takes place.		Hence, the metaphase is characterized by all the
		anaphase of both mitosis and meiosis, atids are separated and pulled towards		chromosomes coming to lie at the equator with one chromatid of each chromosome connected by
		te poles.		its connected by its kinetochore to spindle fibres
63	(d)			from one pole and its sister chromatid connected
		ubules are hollow, cylindrical structure		by its kinetochore to spindle fibres from the
		om tubulin protein. The mitotic spindle	71	opposite pole
		ed in separation of replicated chromosomes mitosis is assembly of microtubules.	71	(c) Meiosis-I
65	(a)	interstation in assembly of interotubules.		(i) The bivalents become arranged around the
		aphase Spindle fibres attaches to		equator of the spindle, attached by their
		chores of chromosomes		centromeres
		osomes are moved to spindle equator and gned along metaphase plate through		(ii) Each pair of the homologous chromosomes is called bivalent which pair up in the process of
		e fibres of both poles		synapsis
	-r-man	a se tractin poros	72	(d)
				Colchicine serves as mitotic spindle poison.

	Chrom	osomes are visible with chromatids at		(ii) S-phase (synthesis)
	metapl	hase stage of mitosis. It is the best stage to		(iii) G ₂ -phase (gap 2)
		e the shape, size and number of		The correct sequence of a cell cycle is
		osomes.		$G_1 \rightarrow S \rightarrow G_2 \rightarrow M$
74	(b)		82	(b)
		ain events which take place in G₁-phase are:		It is mitosis, in which both diploid and haploid
	8.	Intensive cellular synthesis,		cells undergoes this process.
				If a diploid cell undergoes mitosis, it results in two
	9.	Pooling of nucleotides for synthesis of		identical diploid cells. $2n \rightarrow n$
		rRNA.		If a haploid cell undergoes mitosis, the result is
	10.	Sunthesis of ongumes and ATD storage		two identical haploid cells $(n \rightarrow n)$.
	10.	Synthesis of enzymes and ATP storage,		In meiosis however, a diploid cell participates that
	11.	Synthesis of NHC protein, carbohydrates,		divides twice to produce four haploid cells
		liquids, etc.	83	(d)
		•		Some cells in the adult animals do not appear to
75	(c)			exhibit division (e.g., heart cells, and many other
	-	ase-I, anaphase-II.		cells divide only occasionally <i>e</i> . <i>g</i> ., when there is
	-	phase-I chromosome become half in		need to replace cells that have been lost due to
		er. Chromosomes split and move to opposite		injury or cell death. These cells that do not divide
		f the cell, both in anaphase-I and anaphase-		further and exit G ₁ -phase to enter an inactive
		difference is that in anaphase-I,		stage called quiescent stage (G_0) of the cell cycle.
		ogous pairs of chromosomes are split and		Cells in this stage remains metabolically active but
	-	phase-II, sister chromatids are split		no longer proliferate
76	(a)		84	(d)
		y, homeotypic cell division takes place in		A-diploid; B-haploid
		actional megaspore without cytokinesis.	85	(c)
77	(d)			The spindle are formed of microtubules
		ticellular organisms, cell division brings	86	(d)
		embryonic development and growth and		In mitosis, prophase is the longest phase of
	-	ays an important role in repair and		karyokinesis. In early prophase, nuclear
		enance of the body and also in reproduction,		membrane and nucleolus start disintegrating. Cell
70		sexual and sexual		cytoskeleton, Golgi complex, ER, etc, also
78	(a) Maiaai			disappear.
		s involves two sequential cycles of nuclear	87	(b)
		Il division called meiosis-I and meiosis-II		The plane of alignment of the chromosomes at
79	(d)	ly a single cycle of DNA replication		metaphase is referred to as the metaphase plat.
79		pachytene of meiosis-I, the chromosomes		They key features of metaphase are
	-	e bivalent (tetrad) in the beginning, <i>i. e</i> ,		(i) Spindle fibres attach to kinetochores of
		romosome with two chromatids.		chromosomes
80	(b)	nomosome with two emomatics.		(ii) Chromosomes are moved to spindle equator
00		eplicates only once in each cell cycle (S-		and get aligned along metaphase plate through
	phase)		00	spindle fibres to both poles
81	(c)		88	
		ll cycle is divided into two basic phases		In meiosis-I, displacement of chiasmata takes
		erphase		place in diakinesis and homologous chromosomes
		phase (mitosis phase)	00	segregates during anaphase-I
	• •	terphase is further divided into three	89	(c)
	phases	-		Colchicine is an alkaloid widely used in plant
	-			THEEDING THE HUMBING THE CHEMINGOINE HUMBAR

(i) G₁-phase (gap 1)

73

(c)

breeding for doubling the chromosome number.

Colchicine is extracted from the corms of *Autumn crocus (Colchicum autumnale)*. The alkaloid does not allow the formation of spindle. Colchicine induced polyploidy has been used in raising several varieties of horticultural and agricultural plants, *e. g.*, potato

90 **(c)**

Crossing over leads to separation of linked genes and recombination with the genes present on homologous chromosome to form new combinations.

91 **(a)**

The correct sequence of cell cycle phases is $G_1 \rightarrow S \rightarrow G_2 \rightarrow M.$

92 **(c)**

There are two main ways of cell division *i.e.,* mitosis and meiosis. In each case, division of the nucleus, called karyokinesis, occurs before the division of the cytoplasm, termed as cytokinesis

93 **(a)**

Cell would normally proceed to mitosis without interruption once it had started the S-period.

94 **(a)**

The two chromatids of a metaphase chromosome represent replicated chromosomes to be separated at anaphase.

95 **(b)**

During interphase, the chromosome material (DNA of chromosome) replicates and becomes doubled. Chromosome material in the form of very loosely coiled threads is called chromatin

96 **(a)**

G₁-phase is the longest phase of the cell cycle and is also called as presynthetic or post mitotic phase. During it, the synthesis of biochemicals like RNAs, proteins, enzymes (DNA polymerase) for DNA synthesis, amino acids for histone formation, nucleotides and ATP, takes place.

97 **(d)**

Telomeres are the ends of chromosomes. These are required for the individuality of chromosomes. Generally, these are present more than one and less than five in a chromosome.

98 **(a)**

100 **(c)**

Meiosis is division necessary for the formation of gamates in animals and spores in plants. **Prophase-I** is longest phase of meiosis and composed of leptotene, zygotene, pachytene, diplotene and diakinesis. Crossing over is also an enzyme mediated process and the enzyme involved is called recombinase

101 **(b)**

Independent Assortment of Chromosomes The paternal and maternal chromosomes of each homologous pairs segregates during anaphase-I independently of the other chromosomes. Anaphase-I is the cytological event that corresponds to Mendel's law of independent assortment.

Although the paternal and maternal chromosomes of a homologous pair have the genes for the same traits, either chromosome of a pair may carry different alleles of the same genes. Therefore, independent assortment of homologous chromosomes in anaphase-I introduces genetic variability

102 **(b)**

Cytokinesis is thought to be the final part of telophase, however, it is a separate process that begins at the same time as telophase. In telophase, new membranes forms around the daughter nuclei, when chromatids arrive at opposite poles of cell.

The chromosomes disperse and are no longer visible under the light microscope. The spindle fibres disperse and cytokinesis or the partitioning of the cell also begin during their stage

103 **(b)**

In meiosis, nucleus undergoes two divisions (first is reductional and second is equational), while chromosomes divide only once (in anaphase-II).

104 **(d)**

Amitosis is known as direct division. In this method, nuclear envelope remains intact. *The steps involved in amitosis are as follows* (i) The nucleus of the cell elongates and develop

(i) The nucleus of the cell elongates and develops a constriction round its middle

(ii) The constriction in nucleus gradually deepens and finally cuts the nucleus into two daughter nuclei

(iii) The constriction appears in the cytoplasm(iv) The cytoplasmic constriction divides the parent cell into two daughter cells, each with a nucleus

105 **(d)**

As a result of mitotic division, the number of daughter cells becomes double. Thus, 8 mitotic divisions are required to produce 256 daughter cells from a single cell. $\boxed{1 \longrightarrow 2 \xrightarrow{II} 4 \xrightarrow{III} 8 \xrightarrow{IV} 16}$

256 VIII 128 VII 64 VI

106 **(d)**

The second check point called mitotic cyclin lies between G_2 and M-phase and causes transition from G_2 to M-phase

107 **(b)**

A-Nuclear division; B-Karyokinesis; C-Cytokinesis

108 **(b)**

In the G_1 -phase of interphase, the cell is metabolically active and continuously grows but do not replicate its DNA S or synthesis phase marks the period during which DNA synthesis or replication takes place. During this time, the amount of DNA per cell gets double

109 **(b)**

Replication of DNA takes place during S-phase of cell cycle. The number of chromosomes reduced only in meiosis. So, the number remains 14 in G_1 -phase

110 (a)

Chromosomal crossing over is the exchange of genetic material between homologous chromosomes that results in the recombinant chromosomes. It occurs during prophase-I of meiosis

111 (a)

Lampbrush chromosomes are present in growing oocytes, during the diplotene stage of meiotic prophase-I. Chromosomes transform into the Lampbrush form due to an active transcription of many genes

112 (a)

Prophase-I is the longest stage in the first division of meiosis and is divided into a number of substages. The chronological sequence is leptotene, zygotene, pachytene, diplotene and diakinesis.

The characteristic phenomenon during pachytene is the exchange of chromosomal segments, *i.e.*, the recombination of gene or crossing over

113 **(b)**

Chiasmata formation is the consequence of crossing over. Each chiasma possesses the site of exchange of material between non-sister chromatids. It is produced by breakage and reunion between any two of the four strands present at each site. Chiasmata are most appropriately observed during **diplotene substage** of **meiosis-I**.

114 **(a)**

Long thin thread-like chromosome lie in unpaired condition in **leptotene** of prophase-I.

115 **(d)**

During meiosis, beads like structures are absent on chromosomes and separation of two basic sets of chromosome occurs

116 **(c)**

Some cells that do not divide further, exit G_1 phase and enter an inactive stage called quiescent stage (G_0) of the cell cycle. Cells in this stage remains metabolically active but no longer proliferate unless called on to do so depending on the requirement of the organism

117 **(c)**

During **anaphase** stage of mitosis, centromere of the chromosome divides and the two chromatids start repelling each other, separate completely to become daughter chromosome and move towards the opposite poles.

118 **(c)**

The S and G_2 -phases of interphase are followed by prophase. Prophase is marked by the initiation of condensation of chromosomal material. The chromosomal material become untangled during the process of chromatin condensation. Centriole, now begins to move towards opposite poles of the cell.

Therefore, when dividing cells are examined under a light microscope, in prophase only the chromosomes become visible

119 **(b)**

Recombination of **genes on** the same chromosome is accomplished by crossing over, a process by which parts of homologous chromosomes are interchanged. Crossing over takes place between non-sister chromatids of homologous chromosomes in pachytene stage of meiosis-I.

120 (d)

 G_1 -phase corresponds to the interval between mitosis and initiation of DNA replication. During G_1 -phase, the cell is metabolically active and continuously grows but do not replicate its DNA

121 **(b)**

Duration of the cell cycle, *i.e.*, period between two successive cell divisions is called generation time. It depends on the type of cell and external factors such as temperature food and oxygen supplies.

Mammalian (*e.g.*, human) cell divides once in approximate every 24 hrs

122 **(b)**

There are two main ways of cell division *i.e.,* mitosis and meiosis. In each case, division of the nucleus, called karyokinesis, occurs before the division of the cytoplasm, termed as cytokinesis

123 **(d)**

All the statements are correct

124 **(c)**

During the G_0 -phase, cells are metabolically active but no longer proliferate in normal condition

125 (c)

In **pachytene** substage of meiosis-I, the paired homologous chromosomes divide into sister chromatids. Thus, each bivalent is composed of four chromatids and known as tetrad.

126 **(a)**

The pairing of homologous chromosomes during **zygotene** is called synapsis, *i. e.*, the homologous chromosomes, which come from mother and father paired in zygotene.

127 **(a)**

Mitosis usually results in the production of diploid daughter cells with identical genetic complement. The growth of multicellular organisms is due to mitosis. Cell growth results in disturbing the ratio between the nucleus and the cytoplasm. It therefore, becomes essential for the cell to divide to restore the nucleo-cytoplasmic ratio. A very significant contribution of mitosis is cell repair The cells of the upper layer of the epidermis, cells of the lining of the gut and blood cells are being constantly replaced. Mitotic divisions in the meristematic tissues – the apical and the lateral cambium, result in a continuous growth of plants throughout their life

128 **(b)**

Mitosis divides the parent cell into two identical daughter cells, each with a nucleus having the same amount of DNA, the same number and kind of chromosomes and the same heredity instructions as the parent cell, that's why it is called as the equational division

129 **(b)**

The complete disintegration of the nuclear envelope marks the start of the second phase of mitosis, *i.e.*, metaphase. Hence the chromosomes are spread through the cytoplasm of the cell. By this stage, condensation of chromosomes is completed and they can be observed clearly under the microscope. This then, is the stage of which morphology of chromosomes is most easily studied. At this stage, metaphase chromosomes are made up of two sister chromatids, which are held together by the centromere

130 **(b)**

In plant cells, during metaphase chromosomes line up around the equator of the spindle and attached by their centromere to the spindle fibres (microtubules). In animal cells, during metaphase, smaller chromosomes are usually central in position with larger ones peripheral in position.

131 **(c)**

Mitosis lasts on an average from 30 min to 3 hrs 132 (a)

In the S and G₂-phases of interphase, the new DNA molecules formed are not distinct but interwined. Prophase, which is the first stage of mitosis follows the S and G₂-phases of interphase

133 **(a)**

A-Cyclins; B-CdK; C-Check points; D-Mitotic cyclin 134 **(b)**

Synapsis is the pairing of homologous chromosomes during the zygotene stage of meiosis. Each pair is called bivalent. One chromosome of the pair comes from the male parent and other from the female parent. Each member of the pair is of the same length, their centromeres are in the same position and they usually have the same number of genes arranged in the same order. After zygotene stage, cell entered in **pachytene** stage in which the bivalents become spiralled, shortened and thickened.

135 **(d)**

Prophase is generally identified by the initiation of condensation of chromosomal material. The chromosomal material condenses to form chromosomes. The nuclear envelope breaks down and spindles start to assemble at opposite ends of the cell

136 **(b)**

CdK₂/cyclin B.

The cell cycle is controlled by enzymes like cyclin dependent kinases (CdKs). CdKs phosphorylate amino acids like serine and threonine which initiates or blocks the activities related to cell cycle. *The other check points involved in cell cycle are*

- 12. G_1 check point (Enter S or synthesis) is controlled by CdK₄/Cyclin D, CdK₆/Cyclin D
- 13. G_2 check point (Enter M or maturation promoting factor) by is controlled CdK₂/cyclin B

Metaphase check point is controlled by cyclin B degradation

137 **(c)**

Mitosis is divided into four stages A-Prophase, B-Metaphase, C-Anaphase, D-Telophase

138 **(d)**

Telophase is the reverse stage of prophase. During this phase, the cytoplasmic viscosity decreases and the two chromosome groups reorganize themselves into nuclei. A nucleae envelope appears outside the nucleoplasm collected in the area of chromatin. Spindle fibres disappear around the poles and Golgi complex and endoplasmic reticulum are reformed

139 **(c)**

I. Spindle microtubules that extends from the two poles of a dividing cell are called polar fibres II. A centromere that connects two identical copies of single chromosome. These two copies are called sister chromatids

III. In 'X' phase, the paired chromosomes separate and begin moving to opposite ends of the cell.This 'X' phase is called anaphase

141 **(c)**

Interphase (L. inter-between, Gk, *phasis* – aspects) is a series of changes that takes place in a newly formed cell and its nucleus before it becomes capable of dividing again. It is a period of intense synthesis and growth. The interphase takes approximately 75-95% of the entire generation time. It is further divided into three periods of phases first gap or G_1 -phase, synthetic or S-phase and second gap or G_2 -phase Duration of these phases varies in different organisms

142 **(b)**

In anaphase-I chromosome become half in number. Chromosomes split and move to opposite ends of the cell, both in anaphase-I and anaphase-II. The difference is that in anaphase-I, homologous pairs of chromosomes are split and

homologous pairs of chromosomes are split and in anaphase-II, sister chromatids are split 143 (d) Colchinine ($C_{22}H_{25}O_6N$) is used to induce polyploidy. *Raphanobrassica* (4n = 36) was produced by **G D Karpechenko** (1927) by crossing radish (*Raphanus sativus* 2n = 18) and cabbage (*Brassica oleracea* 2n = 18). It is the first **allotetraploid**.

144 **(c)**

The spindle apparatus formed during cell division is composed of microtubules radiating in all directions. The microtubules are chemically composed of **tubulin** protein (α -tubulin, β tubulin).

145 **(a)**

Ophioglossum is a gene of about 25-30 species. It is a plant. It has the highest chromosome count of any known living organism, with 1260 chromosomes. In haploid stage, 631 chromosomes in number

146 **(a)**

At telophase stage, nuclear membrane vesicles associate with the surface of individual chromosome and fuse to reform the nuclear membranes, which partially enclose cluster of chromosomes before coalescing to reform the complete nuclear envelope. During this process, the nuclear pores reassemble and reassociate to form the nuclear lamina. One of the lamina proteins (lamina-B) remains with the nuclear membrane fragments throughout mitosis and may help nucleate reassembly. After the nucleus reforms, the pores pump in nuclear proteins, the chromosome decondense and RNA synthesis resumes, causing the nucleolus to reappear.

147 **(b)**

In zygotene, a filamentous ladder like nucleoprotein complex called syaptomemal complex is observed between the homologous chromosomes. It forms structural basis for pairing and synapsis of meiotic chromosomes.

148 **(a)**

After completion of synapsis, the cell enters the pachytene stage. Here cell remains for four days. Chromosomes are paired and occurs in synaptonemal complexes. The paired chromosomes or bivalent gets shorten and crossing over takes place

149 **(c)**

After M-phase, daughter cell may enter G_0 -phase, which is a stage of arrest of cell cycle, stoppage of cell division and on set of differentiation.

150 (a)

During cell division, chromosomes attaches with spindle at **kinetochore**.

151 **(c)**

In a spindle, negative ends of microtubules are towards the poles.

152 **(d)**

Pachytene or **thick thread** or **pachynema** substage is the longest substage of prophase-I of meiosis. It is characterised by the process of crossing over during which the non-sister chromatids twist around and exchange segments with each other by proper breakage and then fusion of broken ends.

153 **(a)**

Cell cycle consists of two basic stages. There is a long undividing stage called I-phase (interphase) and a short-dividing M-phase

154 **(b)**

The last substage of interphase is G₂-phase in G₂phase, cell organelles increases in number and both cell and nucleus grows in size

 G_1 -phase, is the first stage of interphase during which cell organelles do not increase in number. Cell grows in size but the growth of nucleus is little. It synthesizes RNAs, proteins and other biochemical for cell growth and subsequent replication of DNA

155 **(a)**

In meiosis-I displacement of chiasmata takes place in diakinesis and homologous chromosomes segregate at anaphase-I.

156 **(c)**

Synthesis phase or S-phase is the phase in cell cycle during which DNA is replicated. The synthesis of histone proteins and RNA also takes place in this phase in this phase and each chromosome has two chromatids.

157 **(d)**

The directed movement of the chromosomes into position at the metaphase plate is termed as **congression**.

158 **(c)**

Leptotene The chromosomes appear as thin long threads and have a beaded appearance due to the presence of chromomeres

Pachytene Dissolution of the synaptonemal complex takes place in zygotene. The characteristic phenomenon during pachytene is

the exchange of chromosomal segments, *i.e.*, the recombination of genes or crossing over **Diplotenes** Tetrads formation takes place in pachytene stage. In diplotene the paired chromosomes begin to separate but remains united at the points of interchange of chiasma

159 **(c)**

The number of DNA strands in chromosome at G_2 -stage of cell cycle is **four** due to the replication of DNA during S-phase.

160 **(a)**

Meiosis reduces chromosome number from diploid (2*n*) to haploid (*n*). It occurs in germ cells (eggs or sperm)

161 **(b)**

Prophase-I It is more complicated and prolonged as compared to the similar stage of mitosis. In this phase, chromosomes are not distinguishable because they are often seen as heterochromatic (heteropycnotic) bodies

Anaphase-I The homologous chromosomes break their connections and separate out. It is called disjunction

Interphase It is the phase of cell cycle in which the cell spends the majority of its time in preparing itself for cell division. It is the time between two mitotic or meiotic cell cycles

Metaphase-I A chromatic fibrous bipolar spindles are formed in the areas of dividing nuclei. The spindles are arranged in isobilateral or tetrahedral fashion. The chromosomes arrange themselves at equator

162 **(a)**

 G_1 is the longest period, which involves preparation for RNA and protein synthesis.

163 **(a)**

Bivalent A pair of homologous chromosomes lying together is called a bivalent.

(i) **Tetrad** In pachytene stage, the chromatids of each synapsed chromosome slightly separate and become visible. The two visible chromatids of a chromosome are referred to as dyad

(ii) A group of four homologous chromatids (two dyads) is called a tetrad

(iii) **Pachytene Stage** Crossing over occurs during pachytene stage

(iv) **Non-sister Chromatids** The two chromatids of two homologous chromosomes (bivalent) are termed non-sister chromatids

(v) **Sister Chromatids** The two chromatids of the same chromosome are called sister chromatids

164 **(c)**

$A - G_1; B - G_2$

166 **(a)**

The M-phase represents the phase when the actual cell division or mitosis occurs and the interphase represents the phase between two successive M-phases. It is significant to note that in the 24 hour average duration of cell cycle of a human cell, cell division proper lasts for only about an hour. The interphase lasts more than 95% of the duration of cell cycle

167 **(b)**

It the initial amount of DNA is denoted as 2C, then it increases to 4C.

In the G₁-phase of interphase, the cell is metabolically active and continuously grows but do not replicate its DNA S or synthesis phase marks the period during which DNA synthesis or replication takes place. During this time, the amount of DNA per cell gets double

168 **(a)**

In meiosis, the daughter cells are not similar to that of parent genetically because of **crossing over**. Crossing over is the mutual exchange of homologous chromosomal regions between nonsister chromatids during the first prophase of meiosis.

169 **(c)**

Late anaphase is characterised by

(i) Centromeres split and chromatids separate

(ii) Chromatids move to opposite poles.

Prophase is characterised by centriole separation.

170 **(c)**

 G_2 -phase or second gap phase is the gap between DNA synthesis and division. This particular phase is spent in synthesizing molecules other than DNA, which are required for cell division.

171 **(d)**

The reciprocal exchange of chromosomal material between homologous chromosome is termed as **crossing over**.

172 **(b)**

In meiosis-I, division is reductional while II equational.

173 **(c)**

 G_0 -phase is the arrest phase or suspended phase of the cycle. The cells remain inactive or in a nondividing resting state during this phase and may remain such for days to years before resuming cell division, *e. g.*, nerve cells remain in G_0 -phase.

174 **(c)**

Cell cycle completes in two steps- Interphase and M-phase. Interphase is completed in three successive phases G_1 -phase (post-mitotic phase), S-phase (synthetic phase) and G_2 -phase (premitotic or post-synthetic phase). In the given figure, D is representing the S-phase (synthesis phase) of cell cycle.

175 **(c)**

I. The shortening and thickening of chromosome fibres occurs due to the two reason Coming together of axial proteins and coiling or spiralisation of chromatin fibres. This is assisted by the proteins, called condensins II. Sometimes, overlapping is shown by the elongated chromosome. Their ends are not visible. Therefore, the chromosomes appears like a ball of wool and this stage is called sprime stage III. Animal cells generally have two centrosome or centriole pairs lying close together. These two centrides begins to move towards the opposite sides of the microtubules, surrounding each pair of centrioles (diplosome). It look like a starshaped body called aster

IV. Shortening of chromosome during prophase is must for their equal distribution during anaphase. Each chromosome appears to have two longitudinal threads called chromatids or sister chromatids, attached to each other by means of a narrow point called centromere

176 **(a)**

At **metaphase**, the chromosome are clearly visible as composed to two closely associated halves (chromatids) and the chromosomes have undergone maximum contraction, so these can be counted conveniently.

177 **(a)**

Metaphase in both mitosis and meiosis is characterised by the orientation of chromosomes themselves on the spindle fibres at the equatorial plate.

178 **(b)**

Sporophyte is a diploid generation while gametophyte is haploid. Meiosis cause the

reduction of chromosome number to half, i.e., from diploid to haploid.

179 (d)

The first meiotic division leads to reduction of chromosome number of half and the second meiotic division to segregate the replicated chromosomes.

180 **(b)**

There are two main ways of cell division *i.e.*, mitosis and meiosis. In each case, division of the nucleus, called karyokinesis, occurs before the division of the cytoplasm, termed as cytokinesis

181 (a)

In meiotic cell division, homologous chromosomes pair up during zygotene stage of prophase-I, this phenomena is called synapsis. During anaphase-I, homologous chromosomes of each bivalent start migrating towards opposite pole of the spindle, ultimately each pole receives a 189 (d) haploid group of regregated chromosomes.

182 (c)

During pachytene substage of prophase-I of meiosis, the non-sister chromatids of homologues exchange segments between themselves. This exchange of chromatid segments is called **crossing** over, which involves proper breakage and then fusion of broken ends oppositely and hence, results in the recombination.

183 (c)

The zygote is formed by the fusion of male and female gametes. The male and female gametes are formed by meiosis in diploid organism. A diploid living organism develops from zygote by repeated mitotic divisions.

184 (d)

Synapsis of homologous chromosomes takes place during zygotene stage of meiosis-I. Division of centromere takes place during anaphase-II of meiosis.

185 (d)

Egg is haploid and has 5 pg (pico gram) DNA. Its animal, which is diploid will be having 10 pg DNA. |193 (d) In S-phase, DNA doubles and therefore, in G₂amount of DNA will be 20 pg.

186 (d)

Meiosis occurs in a diploid cell. It is a double division which gives rise to four haploid cells, each having half the number of chromosomes as compared to the parent cell. The term 'meiosis' was coined by Farmer and Moore in 1905

187 (a)

Chromosomes that results from the separation of sister chromatids during cell division are called daughter chromosomes. During anaphase of mitosis, paired chromosomes (sister chromatids) separates to form daughter chromosomes. Each daughter chromosome migrates to centromere, toward the opposite ends of the cell. At the end of cell division, two distinct daughter cells are formed from a single cell

188 (b)

In G₂-phase of interphase stage of cll cycle, the proteins required for spindle formation are synthesized. In G₁-phase, enzymes required for protein and DNA replication are synthesized. In S-phase, DNA replication process takes place. In anaphase, chromosomes split longitudinally at the centromere.

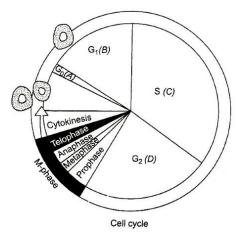
Meiosis is a double division, which occurs in a diploid cell (nucleus) and gives rise to four haploid cells (nuclei), each having half the number of chromosomes as compared to the parent cell. In meiosis-I, bivalent is an association of four chromatids and two centromeres.

190 (d)

Drug colchicines is obtained from*Colchicum autumnale*. It arrests the polymerization of microtubules from tubulin protein, i.e., arrests spindle formation at metaphase.

191 **(b)**

Replication of DNA takes place at S-phase of cell cycle. The number of chromosomes reduced only in meiosis. So, the number remain 14, 14, and 14 in G₁ after S and after M-phase.


192 (a)

During diplotene substage of meiotic division, the force of attraction between homologous chromosomes reduced and later on they move apart.

The beginning of diplotene stage is marked by chiasma formation. The chiasma formation is the indication of crossing over and the beginning of separation of chromosomes.

The chiasma formation is associated with the process of terminalisation

194 (a)

A typical eukaryotic cell in a culture divides once in approximately 24 hrs. The duration of cell cycle can vary from organism to organism and also from cell to cell type

196 **(c)**

Interphase of cell cycle is divided into three phases- G_1 , S and G_2 -phase. The, S-phase comes in between G_1 and G_2 phase.

197 **(a)**

Synapsis is the pairing of homologous chromosomes during meiosis. While autosomes undergoes synapsis during meiosis, sex chromosomes often remain unpaired. A consequence of recombinant synapsis is to increase genetic variability within both the offsprings and population

198 **(c)**

In prokaryotes and unicellular eukaryotic organisms, cell division is a method of multiplication but in multicellular eukaryotic organism, it is a method of growth.

200 **(b)**

M-phase (mitosis) is the most important period of cell cycle. It involves a major recognisation of virtually all components of the cell. Since, the number of chromosomes in the parent and progeny cells is the same, it is also called as equal division

201 **(a)**

There are two main events in mitosis, karyokinesis or duplication of the nucleus, followed by division of the cytoplasm called cytokinesis. This is followed by the separation of the daughter cells

202 **(a)**

- III Prophase
- IV Metaphase
- Anaphase-I

- II Telophase-I
- V Telophase-II

203 **(a)**

Reduces by half.

Meiosis start with one diploid containing copies of chromosome, one from mother and one from father. The cell divides twice, producing up to four haploid cells containing one copy of each chromosome

205 **(c)**

Anaphase is characterised by **splitting of the centromeres** and separation of chromatids. Chromatids move to opposite poles from the equatorial plates.

206 **(c)**

Chiasma is an attachment of two non-sister chromatids in a bivalent in diplotene stage of prophase-I of meiosis. Each chiasma results in the exchange of genetic material between non-sister chromatids, *i. e.*, **crossing over**.

207 **(b)**

One of the main functions of centromere is the **cell plate formation**.

208 **(d)**

The duration of cell cycle of yeast is 90 min

209 **(d)**

Synapsis is the pairing of homologous chromosomes during zygotene stage of prophase-I of meiotic division-I. These homologous chromosomes come from mother and father.

210 **(a)**

DNA content becomes double in interphase. Interphase is divided into G_1 , S and G_2 -phase. Out of which in S-phase, the cell synthesizes a replica of its genome, *i. e.*, DNA replication occurs during this phase, which ultimately results in the duplication of chromosomal material.

211 **(a)**

Colchicine is an antimitotic drug (alkaloid) which is obtained from *Colchicum* (family-Lilliaceae). It binds to one tubulin molecule and prevents its polymerization. The depolymerisation of tubulin results in disappearance of mitotic spindle, blocking the cells mitotic chromosomal division of metaphase and anaphase

212 **(b)**

The correct sequence is:

Synapsis→Crossing over→Terminalization→ Disjunction of genomes

213 (a)

'Tubulin' is a cytoskeletal globular protein that polymerizes to form **microtubules**. During cell division, the microtubules radiate from each end of the cell and form a basket like arrangement (the spindle), which helps in the movement of chromosomes to poles.

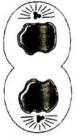
214 **(d)**

Diakinesis is the final stage of the prophase in meiosis. It is characterized by shortening and thickening of the paired chromosomes, formation of the spindle fibres, disappearance of the nucleolus and degeneration of the nuclear membrane

215 **(c)**

In cleavage, there is no spindle develops to guide the chromosomal movement.

216 **(c)**


In G_2 -phase chromosome number remains same, so the right answer is 12 chromosomes.

217 **(b)**

Meiosis occurs in organisms during sexual reproduction

218 (d)

At the beginning of the final stage of mitosis, *i.e.*, telophase, the chromosomes that have reached their respective poles, decondense and lose their individuality. The individual chromosomes can no longer be seen and chromatin material tends to collect in a mass in the two poles (Fig.). *This is the stage which shows the following key events*

Telophase

219 **(a)**

Interphase has three phases- G_1 , S and G_2 . Replication of centriole occurs during G_1 -phase of interphase. DNA replication takes place in S-phase of interphase.

220 **(a)**

Genetic recombination occurs due to **fertilization** and **meiosis** crossing over.

221 **(a)**

During mitosis, DNA replicates once for one cell division and in meiosis also the DNA replicates once for two cell divisions so, the chromosome number becomes half in meiosis.

Mitosis occurs in both sexually and asexually reproducing organisms, while meiosis occurs only in sexually reproducing organisms.

222 (a)

Interphase of cell cycle is composed of G_1 -phase, G_2 -phase and S-phase. During S-phase, DNA replicates in semi conservative manner so, each chromosome is formed of two chromatids joined at centromere.

223 **(b)**

Meiosis is a special type of division in which the chromosomes duplicate only once but cell divides twice. So, one parent cell produces 4 daughter cells. It is found in diploid germ cells. The first division in meiosis is reduction or heterotypic.

224 **(c)**

Post reproductive stage of a cell includes cell growth. The term cell growth is used in the contexts of cell development and cell division. As we are concerned about growth (development) only, it refers to the growth of cell that is to increase in cytoplasmic and organelle volume that is in G_1 -phase

225 **(a)**

Interphase is the period between the end of one cell division to the beginning of next cell division. During this phase, the cell is metabolically very active and prepares itself for the next division.

226 **(a)**

The term 'mitosis' was coined by **Flemming**

227 **(d)**

During telophase, the chromatids have reached the poles of the cell, uncoil and lengthen to form chromatin again. The spindle fibres disintegrate and centriole replicate. Nucleoli and nuclear envelope reappear and hence, two daughter nuclei are formed at each pole.