
NEET BIOLOGY

PHOTOSYNTHESIS IN HIGHER PLANTS

 molecule of hexose sugar by C₄-plants? a) 2 b) 6 c) 0 d) 12 2. Proton gradient is broken down due to a) Movement of electrons across the membrane to stroma b) Movement of electrons across the membrane to lumen 	
2. Proton gradient is broken down due toa) Movement of electrons across the membrane to stroma	
a) Movement of electrons across the membrane to stroma	
b) Movement of electrons across the membrane to lumen	
c) Movement of proton across the membrane to lumen	
d) Movement of proton across the membrane to stroma	
3. Which of the following is a simplified equation of photosynthesis?	
a) $CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} C_5H_{10}O_4 + H_2O + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \uparrow \text{b) } CO_2 + 2H_2O \xrightarrow{\text{Light energy}}_{\text{Chlorophyll}} (CH_2O)_n + O_2 \to O_$	
c) $CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} C_3H_6O_3 + CO_2 + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} C_3H_6O_3 + CO_2 + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} C_3H_6O_3 + CO_2 + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow d) CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} (CH_2O)_n + H_2O \xrightarrow{\text{Light energy}}{\text{Chlorophyll}} CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{CO_2 + 2H_2O \xrightarrow{\text{Light energy}}}{CO_2 + 2H_2O \xrightarrow{\text{Light energy}}{CO_2$	
4. The membrane of thylakoid is called	
a) Cell membrane b) Fret membrane	
c) Granum membrane d) Thylakoid membrane	
5. The enzyme responsible for primary carboxylation in C ₃ -plants is	
a) Hexokinase b) Succinic dehydrogenase	
c) Pyruvate carboxylase d) RuBP carboxylase oxygenase	
6. The law of limiting factors was proposed with particular reference to photosynthesis. Identify the	
scientise, who proposed this law?	
a) Calvin b) Weismann c) Emerson d) Blackman	
7. The synthesis of one molecule of glucose during Calvin cycle requires	
a) 12 molecules of ATP and 18 molecules of NADPH ₂	
b) 6 molecules of ATP and 12 molecules of NADPH ₂	
c) 18 molecules of ATP and 12 molecules of NADPH ₂	
d) 12 molecules each of ATP and NADPH ₂	
8. The enzymatic reactions incorporate CO_2 into the plants leading to the synthesis of sugar in	
a) Stroma b) Stroma lamella c) Grana d) Both (a) and (b)	
9. In CAM-plants, carbon dioxide acceptor is	
a) RuBP b) PEP c) OAA d) PGA	
10. PEP carboxylase	
I. is involved in atleast some CO ₂ fixation in both C ₃ and C ₄ -plants	
II. Catalyses the reaction of fixing CO_2 into pyruvic acid in bundle sheath cells	
III. is capable of fixing CO_2 more efficiently at lower atmospheric CO_2 concentration than RuBP	
carboxylase	
Select the correct option	
a) I and II b) II and III c) I, II and III d) Only III	
11. Which factor is not limiting in normal condition for photosynthesis?	
a) Air b) Carbon dioxide c) Water d) Chlorophyll	
12. PS is made up of which of the following?	
a) Reaction centre b) Antenna molecule	
· · · · · · · · · · · ·	

3.	absorption spectrum?	L L	adiation takes place in	U
	a) Chlorophyll- <i>a</i>	b) Chlorophyll- <i>b</i>	c) Xanthophyll	d) Carotenoid
4.	Factors affecting photos			
	I. number and size of lea			
	II. age and orientation of			
	III. amount of chlorophy			
	IV. amount of O_2 and CC			
	Select the correct option		a) W V and I	d) I. U. UI. and IV.
-	a) I, II and IV	b) II, IV and V	c) IV, V and I	d) I, II, III and IV
5.	-			er one was exposed to light. On
	-	starch, in the presence of si	unlight, on may concil	ude that photosynthesis had
	occurred in		h) Plack paper cor	varied next of leaves
	a) Green part of leavesc) Both (a) and (b)		d) None of the abo	rered part of leaves
6.	I. It is the characteristic	of Cnlants	uj none or ule dDo	νι
0.	II. It is the characteristic			
	III. It occurs in chloroph			
	IV. It occurs in day time			
	V. It occurs in night			
	•	ns in relation to photorespi	ration	
	Correct option Incorrect			
	a) I, IV II, II	-	b) II, III, IV	I, V
	c) I, II, III IV, V		d) IV, V	I, II, III
7.	First reaction in photos		y ,	
	a) Photolysis of water		b) Excitation of ch	lorophyll molecule
	c) Formation of APT		d) Fixation of CO_2	1 0
8.	Kranz anatomy is a mor	phological diversity in the	leaves of	
	a) C_3 -plants	b) C_4 -plants	c) Both (a) and (b) d) CAM-plants
9.	Which of the following	is concerned with carbon di	ioxide fixation?	
	a) Krebs cycle	b) Calvin cycle	c) Ornithine cycle	d) Glycolysis
0.	Hill reaction occurs in			
	a) High altitude plants		b) Total darkness	
	c) Absence of water		d) Presence of ferr	icyanide
1.	Rubisco enzyme is abse	nt in		
	a) Mesophyll cell	b) Bundle sheath cell	c) C ₃ -plants	d) C ₄ -plants
2.	During the experiment	in laboratory, the thylakoid	is some how punctur	red so that the interior of the
	thylakoid is no longer s	eparated from stroma. This	damage will have the	e direction effect on
	a) ATP formation		b) Absorption of li	ght
	c) Flow of electrons fro		d) All of the above	
3.		_		ng off and taking up of carbon
	dioxide by the leaves of	a plant. Why is most carbo	n dioxide given off wh	ien the light intensity is zero un

	87		
	Construction of the set of the se		
	2 Light intensity		
	a) Because it is just the start of the experiment		
	b) Only respiration is taking place at this intensity	v of light	
	c) Only photosynthesis is taking place at this inte		
	d) The rate of photosynthesis is equivalent to the		
4.	Cyclic photophosphorylation results only in the		
	a) Formation of ATP	b) Formation of NADF	P^+ + H ⁺ and ATP
	c) Formation of NAD ⁺ + H^+	d) Formation of ADP -	
5.	I. H_2S not H_2O is involved in photosynthesis of su		
- •	II. ATP is produced during light reaction <i>via</i> chem	-	
	III. Absence of light leads to the stoppage of photo		
	IV. Calvin cycle occurs in grana		
	Select the correct option		
	a) II, III and IV b) I, III and IV	c) I, II and IV	d) I, II and III
5.	Under normal condition, which one of the followi		-
<i>.</i>	a) Light b) CO_2	c) Temperature	d) Chlorophyll
7.	Which one is essential for the respiration as well		aj unorophyn
•	a) Rubisco b) Plastocyanin	c) Ubiquinone	d) Cytochrome
R	Light Harvesting Complex (LHC) is	ej obiquinone	a) dy toennome
	a) One molecule of chlorophyll- <i>a</i>	b) Very few molecule	of chlorophyll- <i>a</i>
	c) Hundereds of pigment molecules bound to		
	proteins	uj emerophyn u † em	
Э.	Which of the following represents the correct mo	lecular formula of chlorop	hvll- <i>b</i> ?
	a) $C_{55}H_{72}O_6N_4Mg$ b) $C_{55}H_{72}O_5N_4Mg$	c) $C_{55}H_{72}O_4N_4Mg$	d) $C_{55}H_{70}O_6N_4Mg$
).	In C ₄ -plants, the bundle sheath cells	0) 05511/2041.41.18	a) 05511/00614178
	a) Have thin walls to facilitate gaseous exchange	b) Have large intercel	ular spaces
	c) Are rich in PEP carboxylase	d) Have a high density	•
		a)	or enter optice to
1.	The following (I-IV) are the main steps of chemos	withetic ATP synthesis in	the light reaction. Arrange
1.	The following (I-IV) are the main steps of chemos them in correct order	ynthetic ATP synthesis in	the light reaction. Arrange
1.	them in correct order	ynthetic ATP synthesis in	the light reaction. Arrange
1.	them in correct order I. H ⁺ concentration gradient established	ynthetic ATP synthesis in	the light reaction. Arrange
1.	them in correct order I. H ⁺ concentration gradient established II. H ⁺ diffuses through ATP synthetase		the light reaction. Arrange
1.	them in correct order I. H ⁺ concentration gradient established II. H ⁺ diffuses through ATP synthetase III. Carriers use energy from electrons to move H	+ across the membrane	the light reaction. Arrange
1.	them in correct order I. H ⁺ concentration gradient established II. H ⁺ diffuses through ATP synthetase III. Carriers use energy from electrons to move H ⁻ IV. Electrons from PS-II pass along electron transp	+ across the membrane	the light reaction. Arrange
1.	them in correct order I. H ⁺ concentration gradient established II. H ⁺ diffuses through ATP synthetase III. Carriers use energy from electrons to move H ⁻ IV. Electrons from PS-II pass along electron trans V. Light excites electrons in PS-II	⁺ across the membrane port chain	the light reaction. Arrange
1.	them in correct order I. H ⁺ concentration gradient established II. H ⁺ diffuses through ATP synthetase III. Carriers use energy from electrons to move H ⁺ IV. Electrons from PS-II pass along electron trans V. Light excites electrons in PS-II VI. Energy of H ⁺ flow is used by ATP synthetase t	⁺ across the membrane port chain o make ATP	
	them in correct order I. H ⁺ concentration gradient established II. H ⁺ diffuses through ATP synthetase III. Carriers use energy from electrons to move H ⁻ IV. Electrons from PS-II pass along electron trans V. Light excites electrons in PS-II VI. Energy of H ⁺ flow is used by ATP synthetase t a) I, II, III, IV, V, IV b) II, IV, V, III, II, VI	⁺ across the membrane port chain o make ATP c) V, IV, III, I, II, VI	the light reaction. Arrange d) V, VI, III, IV, II, I
	them in correct order I. H ⁺ concentration gradient established II. H ⁺ diffuses through ATP synthetase III. Carriers use energy from electrons to move H ⁻ IV. Electrons from PS-II pass along electron trans V. Light excites electrons in PS-II VI. Energy of H ⁺ flow is used by ATP synthetase to a) I, II, III, IV, V, IV b) II, IV, V, III, II, VI What is the wavelength of radiations in visible set	 + across the membrane port chain o make ATP c) V, IV, III, I, II, VI ctrum? 	d) V, VI, III, IV, II, I
2.	them in correct order I. H ⁺ concentration gradient established II. H ⁺ diffuses through ATP synthetase III. Carriers use energy from electrons to move H ⁺ IV. Electrons from PS-II pass along electron transf V. Light excites electrons in PS-II VI. Energy of H ⁺ flow is used by ATP synthetase to a) I, II, III, IV, V, IV b) II, IV, V, III, II, VI What is the wavelength of radiations in visible set a) 400-700 nm b) 400-800 nm	 + across the membrane port chain o make ATP c) V, IV, III, I, II, VI ctrum? c) 390-760 nm 	
2.	them in correct order I. H ⁺ concentration gradient established II. H ⁺ diffuses through ATP synthetase III. Carriers use energy from electrons to move H ⁻ IV. Electrons from PS-II pass along electron trans V. Light excites electrons in PS-II VI. Energy of H ⁺ flow is used by ATP synthetase to a) I, II, III, IV, V, IV b) II, IV, V, III, II, VI What is the wavelength of radiations in visible set	 + across the membrane port chain o make ATP c) V, IV, III, I, II, VI ctrum? c) 390-760 nm 	d) V, VI, III, IV, II, I

	a) Morphological predisp	oosition	b) Genetic predispositio	
	c) Temperature		d) Environment predisposition	
45.		ormed from 12 water mole	cules during non-cyclic ph	otophosphorylation?
	a) 12	b) 24	c) 36	d) 48
46.			-	s. How many H ⁺ are formed?
	a) 24 H ⁺	b) 36 H ⁺	c) 12 H ⁺	d) 32 H ⁺
47.	Maximum photosynthesi	s occurs in		
	a) Red light	b) Blue light	c) Green light	d) Violet light
48.	I. Initial CO ₂ acceptor			
	II. Extent of photorespira	tion		
	III. Enzyme catalysing rea	action that fixes CO ₂		
	IV. Presence of Calvin cyc	cle		
	V. Leaf anatomy			
	Which one does not diffe	r in a C ₃ and C ₄ -plants?		
	a) I and V	b) Only IV	c) II and III	d) Only II
49.	Energy transfer in photos	synthesis occurs as		
	a) Phycoerythrin \rightarrow phyco	ocyanin \rightarrow carotenoid \rightarrow ch	lorophyll-a	
	b) Chlorophyll-b →carote	enoid →phycoerythrin →cl	ılorophyll-a	
	c) Phycocyanin→phycoe	rythrin→ carotenoid→ chl	orophyll-a	
	d) Chlorophyll-b \rightarrow carote	enoid \rightarrow phycocyanin \rightarrow chl	orophyll-a	
50.	What is true for photosyn	nthesis?		
	a) Carbon dioxide is oxid	ised and water is reduced		
	b) Carbon dioxide is redu	iced and water is oxidised		
	c) Both carbon dioxide a	nd water are reduced		
	d) Both carbon dioxide a	nd water are oxidised		
51.	Which of the following st	atement is false in case of	(C ₄ -plant)?	
	a) CO ₂ acceptor is RuBis(Co in mesosphyll cell		
	b) Carboxylation occurs i	n mesophyll cells		
	c) Leaves have two cell ty	ypes		
	d) Mesophyll cells lack R	ubisco		
52.	Chlorophyll in chloroplas	sts is located in		
	a) Grana	b) Pyrenoid	c) Stroma	d) Both (a) and (b)
53.	Which photosystem is inv	volved in cyclic photophos	phorylation?	
	a) PS-II		b) PS-I	
	c) Xanthophyll and PS-II		d) Xanthophyll and PS-I	
54.			ist and mitochondria is exp	lained by
	a) Relay pump theory of	Godlewski	b) Cholodny-Went's mo	del
	c) Chemiosmotic theory		d) Munch's mass-flow h	ypothesis
55.	Absorption spectrum of o	chlorophyll- <i>a</i> and the action	on spectrum of photosynthe	esis is identical because
	chlorophyll-a			
	a) Absorbs the maximum	ı light	b) Absorbs the minimum	n light
	c) Absorbs the red and b	lue light	d) Is found most abunda	intly
56.	Which would do maximu	m harm to a tree?		
	a) Loss of half of its bran	ches	b) Loss of all its bark	
	c) Loss of all its leaves		d) Loss of half of its leav	res
57.	Pyruvate + ATP \xrightarrow{y} PEP -	$+ AMP + H_3PO_4$		
		action and choose the corr	rect option	
	a) Phosphopyruvate diki		b) Phosphopyruvate mo	nokinase
	c) Phosphopyruvate diki		d) Phosphopyruvate del	
58.	A wastage process is			-
				Pagel5

	a) Respiration	b) Photosynthesis	c) Photorespiration	d) Movement
59.		glycine is required to releas		
	a) One	b) Two	c) Three	d) Four
60.				
	a) The C_4 -plants do not			
		P leads to the formation of I		
		sphoenol pyruvate results in		CS
		-acids occur in the mesoph	yll cells	
61.	1 1			
	a) More oxygen and less		b) Less oxygen and more	
	c) More temperature an		d) More humidity and le	ss temperature
62.		s/are the raw material for p	hotosynthesis?	
	I. H ₂ O II. CO ₂			
	III. Light IV. Chlorophy			
	Choose the correct optio			
(0)	a) II, III and IV	b) I and IV	c) I, II and III	d) I, II, III and IV
63.	• •	esent in C ₄ -plants in		
	a) Thin cuticle		b) Multi-layered epiderr	
()	c) Kranz type body	- f	d) One-layered epiderm	IS
64.		g form glucose is usually sto	-	d) Changel
65	a) Lipid	b) Carbohydrates	c) Protein	d) Starch
65.	= =	ts into the contents and kee		vater in a glass tumbler and
		edient for photosynthesis to		
		will happen after, say few h		morophyn and nght).
	=	ake place and glucose will		ake place and starch will be
	produced	and place and glacobe with		turn the mixture turbid
	-	ot take place because CO_2		ot take place because intact
	c) dissolves in soda wate		chloroplasts are need	_
	atmosphere	-	-	-
66.	With respect to compens	sation point, which of the fo	llowing is true for C ₃ and (C ₄ -plants
	, Compensation points	of C_3 and C_4 - plants are	Lompensation points	of C ₃ - plant is higher than
	a) equal		b) C_4 -plants	
	c) Compensation points	of C ₄ -plant is higher than C	₃ -d)	
	^{c)} plants			
67.	Light energy in photosyn	nthesis is utilized in		
	a) H_2O converted into H	-	b) ADP converted into A	TP
	c) ATP converted into A		d) None of the above	
68.	-	the given diagram of z-sche	me of light reaction and ch	oose the correct option
	accordingly			
	(Light) A Cacceptor NAI	DPH		
	ADP+iP ATP NAI	2P ⁺		
	B			
	LHC			
	a) A- e^- acceptor, B-ETS,	C-PS-II D-PS-I	b) A- e^- acceptor, B-ETS,	C-PS-I D-PS-II
	c) A-ETS, B-e ⁻ acceptor,		d) A-ETS, B- e^- acceptor,	
69.	$PEP + CO_2 + H_2O \xrightarrow{x} O$			<u>, , , , , , , , , , , , , , , , , , , </u>
57.	$PEP + UO_2 + H_2U \longrightarrow U_2$	xaloacetic acid $+H_3PO_4$		
				Page 6

	Identify X			
	a) Ligase	b) Oxidoreductase	c) PEP carboxylase	d) Lyase
70.	Stroma lamellae membra		, , , , , , , , , , , , , , , , , , ,	5.5
	I. PS-II			
	II. NADP reductase			
	III. non-cyclic photophosp	ohorylation		
	Select the correct option			
	a) I and II	b) II and III	c) III and I	d) I, II and III
71.	RUBISCO stands for			
	a) Ribulosebisphosphate	carboxylase oxygenase		
	b) Ribulose phosphate car	rboxylase oxygenase		
	c) Ribulose phosphate ca	rboxylic oxygenase		
	d) None of the above			
72.	In chloroplasts, chlorophy	yll is present in the		
	a) Outer membrane	b) Inner membrane	c) Thylakoids	d) stroma
73.	DCMC			
	a) Inhibits PS-I			
	b) Inhibits PS-II			
	c) Destroy chloroplast			
	d) Inhibits oxidative phos	phorylation		
74.	Malic acid (4-C) is produc	=	=	
	a) <i>Bryophyllum</i>	b) <i>Kalanchoe</i>	c) <i>Opuntia</i>	d) All of these
75.	_	light reactions producing A	ATP and NADPH ₂ on stroma	al side of thylakoid
	membrane?			
		ATP and NADPH ₂ from str	oma	
	b) Light reaction occurs in			
		n grana need ATP + NADPH	H_2	
	d) CO_2 is produced in stro			
76.	Generally, plants adapted			
		b) C_3 pathway	c) C_5 pathway	d) C ₄ pathway
//.	Correct sequence of rate of		-	
70	a) Red > Blue > Green	b) Blue > Red > Green	c) Green > Blue > Red	d) Green > Red > Blue
78.	During the light reaction,	-	1	
	a) H^+ , O_2 electrons	b) H_2 , O_2 electrons	c) $2H^{+}, \frac{1}{2}O_{2}$ 2 electrons	d) $\frac{1}{2}$ H ₂ , $\frac{1}{2}$ O ₂ electrons
79.	1 1			
	a) One high energy bonds		b) Two high energy bond	S
	c) Three high energy bon		d) Four high energy bond	S
80.		gated to form stalks of disc		
	a) Stroma		b) Grana	
	c) Stroma thylakoids		d) Intergranal thylakoids	
81.		plains the synthesis of ATF	-	
	a) Chemosynthetic hypot		b) Chemiosmotic hypothe	
	c) Potential gradient hype		d) Redox gradient hypoth	iesis
82.	=	le of glucose formation nee		
	a) 12 ATP and 12 NADPH		b) 14 ATP and 12 NADPH	
	c) 16 ATP and 12 NADPH		d) 18 ATP and 12 NADPH	[
83.		pigments in the plants are		
	a) Chlorophyll- <i>a</i> and chlo		b) Chlorophyll- <i>a</i> and chlo	
	c) Chlorophyll- <i>b</i> and chlo	orophyll- <i>a</i>	d) Chlorophyll- <i>b</i> and chlo	orophyll- <i>c</i>

0.4		1 1 1 1 1	1 1	1 1 1 . 1 1
84.	_	to carbon dioxide and relea	_	rbon dioxide is taken by
	a) PGAL	radioactive C ¹⁴ is seen, in v b) PEP	c) RMP	d) PGA
85	Example of water soluble		C) KMF	u) r uA
05.	a) Chlorophyll- α	b) Chlorophyll- <i>b</i>	c) Anthocyanin	d) xanthophyll
96	PS-I and PS-II were disco		cj Anthocyanni	u) xantnopnyn
00.	a) Robert Emerson	b) Blackman	c) Robert Mayer	d) Arnon
87	Photorespiration is also of	,	CJ KODELL MAYEL	u) Al IIOII
07.	I. Glycolate pathway	laneu		
	II. C ₃ -cycle			
	III. Oxidative photosynth	etic carbon cycle		
	Select the correct option	ette carbon cycle		
	a) I and II	b) II and III	c) III and I	d) I, II and III
88.	•		cj m unu r	
00.	a) C_4 -plants	b) C_3 -plants	c) Both (a) and (b)	d) None of these
89.		atements is true with rega		
07.	-	_		
	Chlorophyll- α occurs y	with neak absorption at 68	0 nm in nhoto system-Land	l at 700 nm in photo system-
	a) II	with peak absolption at oo	o inii în photo system 1 and	a at 700 mm m photo system
		m ions are associated with		
	, .	yclic photophosphorylatior		iles
		are both involved in non-cy		
90		adient or solar energy into		
<i>y</i> 0.	a) Physical energy	b) Latent energy	c) Chemical energy	d) Oxidation energy
91.		molecule in light reaction v		a) officiation energy
<i>,</i> 11	a) 2 electrons and 4 prot	_	b) 4 electrons and 4 prot	ons
	c) 4 electrons and 3 prot		d) 2 electrons and 2 prot	
92.	-	the first compound that ac	2	
	photosynthesis?	F		-0 F
	a) NADP	b) RuBP	c) Ferredoxin	d) Cytochrome
93.	,	,	-)	
	a) Increases during the d	_	b) Decreases or increase	s during the day
	c) Increases during night		d) Decreases during any	
94.	, , , ,	en algae are provided with		
		of the following compounds	=	
	a) PGA	b) RuBP	c) Glucose	d) O_2
95.		vo forms. In which from it j	promotes the germination	
	a) P _{fr} from	b) P _r from	c) Both (a) and (b)	d) None of these
96.		- -		-
	a) Formation of chloroph	yll	b) Destruction of chlorop	bhyll
	c) Utilization of sunlight	-	d) Effects of solar light	-
97.	C_4 -pathway is a regular n	node of CO ₂ fixation in		
	I. dicots			
	II. pteridophytes			
	III. monocots			
	Select the correct option			
	a) I and II	b) I and III	c) II and II	d) I, II and III
98.	Carboxylation (C ₃ -cycle)			
	a) Carboxylase	b) RuBP carboxylase	c) RuBP oxygenase	d) Both (b) and (c)

99. The radio between 2-car	rbon and 3-carbon interme	ediates having – NH ₂ group	o formed in photosynthetic
oxidation cycle is			
a) 1:1	b) 2 : 1	c) 3:2	d) 3 : 4
100. In which one of the follo	wing nitrogen is not a cons	stituent?	
a) Invertase	b) Pepsin	c) Idioblast	d) Bacteriochlorophyll
101. If a chemical process is a	-	factors then its rate will be	e determined by
a) Two closely related fa			
	h is close to its minimal val		
	h is close to its maximum v		
	h is close to its appropriate	e value	
102. I. Temperature			
II. CO ₂ concentration			
III. Chlorophyll arranger	nent		
IV. Water			
	s, identify the external facto	ors that affects the rate of j	photosynthesis and correct
option accordingly	b) I II J III		и
a) I, II and IV	b) I, II and III	c) II, III and IV	d) I, III and IV
103. Which activity is perform	ned by PS-I in light reactio		
a) Reduction of NADPH c) Oxidation of NADP ⁺		b) Reduction of NADP ⁺	
•	tion was proposed by	d) Oxidation of NAD	
104. C ₄ pathway for CO ₂ -fixa a) Benson and associate		b) Arnon and associate	c
c) Rouhani et <i>al.,</i>	5	d) Hatch et <i>al.,</i>	5
105. A scientist disrupted the	chloronlast and senarated	-	For fiving CO, be supplied
stroma with	cillor oplast and separated	the strona nom amena.	1 of fixing CO ₂ ne supplied
I. ATP			
II. NADPH			
III. Glucose			
Select the correct option	1		
a) I and III	b) III and II	c) I and II	d) I, II and III
106. CAM helps the plants in	,	,	<i>,</i>
a) Secondary growth	b) Disease resistance	c) Reproduction	d) Conserving water
107. PEP is present in	,		, ,
a) Mesophyll cell	b) Bundle sheath cell	c) Meristematic cell	d) Both (a) and (b)
108. The absorption spectrur	n of chlorophyll		
a) Showa that some cold	ours of light are absorbed r	nore than the others	
b) Approximates the act	ion spectrum of photosynt	hesis	
c) Explains why chlorop	hyll is a green pigment		
d) Has all the above pro	perties		
109. PGA as the first carbon o	lioxide fixation product wa	as discovered in photosynt	hesis of
a) Bryophyte	b) Gymnosperm	c) Angiosperm	d) Alga
110. In C_3 -plants, the first sta	ble compound formed afte	er carbon dioxide fixation i	S
a) Phosphoglyceraldehy	rde		
b) Malic acid			
c) Oxaloacetic acid			
d) 3-phosphoglycerate			
111. Which chemical compou		-	
a) CO ₂	b) 0 ₂	c) H ₂ 0	d) NADPH
112. Colour that we see in lea	-	of	
I. Chlorophyll-a II. Chl	orophyll-b		
			Page

III Vanthankull IV Canatanaid				
III. Xanthophyll IV. Carotenoid a) I and II b) I, III and IV	c) II, III and IV	d) I, II, III and IV		
113. Quantasomes occur on the surface of	cj II, III and IV	uj 1, 11, 111 anu 1V		
a) Cristae b) Plasmalemma	c) Nuclear envelope	d) Thylakoids		
114. First carbon dioxide acceptor in C_4 - plants is	cj Nuclear chvelope	uj mylakolus		
a) PEP b) PGA	c) RuBP	d) Pyruvic acid		
115. In Calvin cycle, if one molecule of RuBP is carboxyla				
a) 2 b) 3	c) 4	d) 5		
116. The type of carbon dioxide fixation seen in many su		aj o		
a) C ₄ -pathway b) C ₂ -pathway	c) CAM-pathway	d) C ₃ -pathway		
117. Water stress causes the stomata toA hence red	, , ,	., ., <u>.</u> ,		
Here A and B refer to				
a) A-open; B-H ₂ O b) A-close; B-H ₂ O	c) A-close; B-CO ₂	d) A-open; B-CO ₂		
118. Photosynthesis cannot continue for long if during li				
place. This is because				
	, b) Photosystem-I stops g	etting excited at a		
a) Only ATP is formed, NADPH ⁺ + H ⁺ is not formed	wavelength of light be	eyond 680 nm		
c) There is unidirectional cyclic movement of the	d) There is no evolution	of oxygen		
electrons				
119. Light reaction of photosynthesis occurs inside				
a) Stroma	b) Grana			
c) Endoplasmic reticulum	d) Cytoplasm			
120. Bundle sheath cells are rich in which enzyme				
a) PEP carboxylase	b) Malate dehydrogenas	e		
c) Phosphofructokinase	d) RuBisCo			
121. In sugarcane plant, 14 CO $_2$ is fixed in a malic acid, in which the enzyme that fixes carbon dioxide is				
a) Ribulose phosphate kinase	b) Fructose phosphatase			
c) Ribulose bisophosphate carboxylase	d) Phosphoenol Pyruvic	acid carboxylase		
122. For yielding one molecule of glucose, the Calvin cyc				
a) Two times b) Four times		d) Eight times		
123. The light reaction of photosynthesis end up in the f				
a) $NaDH_2$ b) ATP	c) Sugar	d) NADPH ₂		
124. In leaves of C_4 -plants, malic acid synthesis during c				
a) Epidermal cells b) Mesophyll cells	ej Banaie Bheadh cens	d) Guard cells		
125. Biosynthetic phase of photosynthesis is the formati				
a) Lipid b) Fat	c) Protein	d) Sugars		
126. What happen to the chloroplast pigment when they	-			
a) They become reduced	b) They become excited	ad		
c) They lose potential energy	d) Calvin cycle is trigger	eu		
 127. In C₄-pathway, the first product identified was a) 3-PGA b) OAA 	c) 2-PGA	d) 1-3DPGA		
128. Law of limiting factors was given by	CJ 2-FUA	uj 1-5DFGA		
a) Leibig b) Blackman	c) Calvin	d) Arnon		
129. PS-I in cyclic photophosphorylation is involved in t				
What does A and B refer here?				
a) A-ATP; B-down hill redox potential	b) A-ADP; B-up hill redo	x notential		
c) A-NADH + H^+ ; B-down hill energy	d) A-NADPH + H^+ ; B-do	-		
130. The green-coloured pigment present in all autotrop				
a) Pelletier Caventou b) Julius Robert Mayer	c) Jean Senebier	d) Melvin Calvin		
131. Within the chloroplast, there is the membranous sy		,		

I. grana			
II. stroma lamellae			
III. fluid stroma			
Choose the correct			
a) I and II	b) II and III	c) I and III	d) I, II and III
	served that when mouse alon		
			ed with a mint plant in the same
	•		cluded from this experiment?
a) Burning candle r	emove the air	b) Mint plant restore	
c) Both (a) and (b)		d) CO ₂ is required for	burning of candle
-	l in photorespiration is/are		
I. chloroplast			
II. peroxisomes			
III. mitochondria			
Choose the correct	-		
a) I and II	b) II and III	c) III and I	d) I, II and III
_	k reaction of photosynthesis	is	
a) Formation of AT			
b) Ionization of wat			
-	rbon dioxide to a pentose sug	-	
	ectron of chlorophyll by a pho	oton of light	
135. Calvin cycle is also	called		
a) Calvin-Benson cy	<i>r</i> cle	b) C ₃ -cycle	
c) Reductive pento		d) All of the above	
			hway, and those in which the
first product was C	₄ acid (OAA), <i>i. e.</i> , theB pa	athway	
	statement by filling appropri		anks
a) A-C ₂ ; B-C ₃	b) A-C ₃ ; B-C ₄	c) A-C ₄ ; B-C ₂	d) A-C ₂ ; B-C ₃
-	n important process for life o	on earth because	
<i>,</i>	source of all food on earth		
	for the release the of oxygen		
· ·	ural process responsible for t	he utilisation of sunlight	
d) All of the above			
138. The mineral involve	ed in the photolysis of water a	are	
I Manganese	II Calcium		
III magnesium	IV Chloride		
a) I and II only	b) I, II and IV only	c) I, II and II only	d) I and IV only
139. Calvin cycle represe	ents		
a) Reductive carbo	kylation	b) Substrate level pho	osphorylation
c) Dark respiration		d) Oxidative carboxyl	
-	sequence of enzymes given b	pelow which participate in	the regeneration phase of
Calvin cycle.			
I. Ribulose-5-pho	sphate isomerase		
II. Ribulose-5-pho	sphate epimerase		
III. Transketolase			
IV. Triose phospha	te isomerase		
a) VI, I, III, II	b) III, IV, II, I	c) IV, III, I, II	d) II, I, IV, III
141. Etiolation in plants			
a) Are grown in dai	·k	b) Have mineral defic	iency
c) Are grown in int	ense light	d) Are grown in blue	light

142. Dichlorophenyl dimethylurea inhibits			
a) PS-I	b) PS-II		
c) Chloroplast functioning	d) Oxidative phosphorylation		
143. Photosynthetic pigments in chloroplast are embedde	ed in the membrane of		
a) Photoglobin b) Matrix	c) Thylakoid	d) Mitochondria	
144. Pigments can be separated from leaf by			
a) ELISA test	b) RIA test		
c) Centrifugation	d) Paper chromatography	У	
145. In which of the following, oxygen does not evolve du	ring photosynthesis?		
a) Photosynthetic red algae			
b) Photosynthetic green algae			
c) Photosynthetic blue-green algae			
d) Photosynthesis bacteria	am amhan diavida and uv	aton during the	
146. Who proved that the organic matter is synthesised fi photosynthesis?	i oni cai bon utoxide and wa	ater during the	
a) Liebig b) Priestley	c) Ingen Housz	d) Von Mayer	
147. Which of the following statements is true with regard	, 0	-	
In PS-II the reaction centre chlorophyll- α has an	In DC I the meanting and	ntre chlorophyll- α has an	
a) absorption peak at 700 nm hence, is called P_{700}	ni	680 nm and is called P_{680}	
c) The spitting of water molecule is associated with	-	II are involved in Z scheme	
PS-I	aj i notosynthemis i ana i		
148. In Calvin cycle, the first product identified was			
a) 3-phosphoglyceric acid	b) 2-phosphoglyceric acid	d	
c) 1-phosphoglyceric acid	d) 4-phosphoglyceric acid		
149. I. Water is oxidised in PS-I not in PS-II			
II. Light is needed for both PS-I and PS-II			
III. Due to photolysis of water, formation of ATP and	NADPH occurs		
IV. Production of NADPH and H ⁺ is associated with F	PS-II not PS-I		
Identify the true statement and select the correct op	tion		
a) I and II b) II and III	c) I and IV	d) II and IV	
150. PS-I is located on the			
a) Non-appressed part of a grana thylakoids	b) Stroma thylakoids		
c) Appressed part of grana thylakoids	d) Both (a) and (b)		
151. I. Chlorophyll- <i>a</i>			
II. Chlorophyll-b			
III. Anthocyanin			
Select the correct option regarding water soluble pig			
a) I and II b) Only II	c) Only II	d) I and II	
152. C_4 -plant minimises the photorespiration because C_4	-		
a) Use PEPcase to initiate CO_2 fixation		alvin cycle in low CO ₂ level	
c) Exclude Calvin cycle	d) Show photorespiration	1	
153. In the process of photosynthesis, water molecule breada) Red drop	b) Photolysis		
c) Phosphorylation	d) Carbon assimilation		
154. Identify A, B and C in the given figure, and choose the		et (A-C) given below	
To maching 1, D and o in the given light c, and choose the	e correct option nom tile s		

Atmosphere Ribulose-1.5- Disphosphete () A	
C ATP (3) (3) (3) (3) (3) (3) (3) (3)	
Sucrose, starch Pr+NADP*	
a) A-Reduction, B-Carboxylation, C-Regeneration	
b) A-Reduction, B-Regeneration, C-Carboxylation	
c) A-Carboxylation, B-Reduction, C-Regeneration	
d) A-Carboxylation, B-Regeneration, C-Reduction	
155. In grana of chloroplast, the reaction $ADP + P_i = ATH$	
a) Oxidative phosphorylation	b) Photophosphorylation
c) Substrate level phosphorylation	d) Dephosphorylation
156. Very strong light has a direct inhibiting effect on pho	-
a) Solarization b) Etiolaration	c) Chlorosis d) Defoliation
157. What is the effect of high CO_2 concentration and hig	
a) Rate of Calvin cycle increased	b) Rate of Kreb cycle decreased
c) Rate of glycolate cycle decreased	d) All of the above
158. pH of thylakoid lumen during photosynthesis is	
a) Basic	b) Neutral
c) Acidic	d) Depends on H ⁺ concentration
159. Head portion of the chlorophyll is calledA Tail	portion of the chlorophyll is calledB Fill in the
with respect to A, B and tick the appropriate option	
a) A-phytol, B-porphyrin	b) A-porphyrin, B-phytol
c) A-pyrrole ring, B-phytol	d) A-porphyrin, B-pyrrole ring
160. Members of family-Crassulaceae perform	
a) C ₃ -photosynthesis b) CAM-photosynthesis	c) C_4 -photosynthesis d) All of these
161A plants have the higher temperature optimum t	thanB the plants adapted climate
Here A and B refer to	
a) A-Desert; B-Tropical	b) A-Temperature; B-Tropical
c) A-Tropical; B-Temperature	d) A-Desert; B-Temperature
162. Which is not correct for ancient plants?	
a) They have photosynthetic pigment	
b) They are primitive algae	
c) They use H_2S as hydrogen source	
d) They release oxygen as byproduct	
163. Which of the following cell organelles is associated w	
a) Mitochondria b) Peroxisome	c) Chloroplast d) All of these
164. The protons are transported across the thylakoid m	
a) Electrons are transferred to hydrogen carrier is v	when is present on inner meniorane
b) Electrons are transferred to electron carrier	20
c) Electrons are transferred to intermembrane space	
d) Electrons are transferred to hydrogen carrier, wh	inch is present outer side of mentoralle
165. The light phase of photosynthesis is called	h) Photo action
a) Hill reaction	b) Photo action
c) Pigment action 166. Which of the following statements are correct?	d) Chlorophyllous process
	Page 13

I. Light reaction occurs in stroma II. Light reaction occurs in grana III. Dark reaction occurs in stroma IV. Dark reaction occurs in grana Choose the correct option d) II and III a) I and II b) II and IV c) III and IV 167. In photosynthesis, what does occur in PS-II? a) It takes longer wavelength of light and e^{-} from H₂O b) It takes shorter wavelength of light and e^{-} from H₂O c) It takes longer wavelength of light and e^{-} from NADP d) It takes shorter wavelength of light and e^{-} from NADP 168. Cyclic-photophosphorylation results in the formation of a) NADPH b) ATP and NADPH c) ATP, NADPH and oxygen d) ATP 169. Identify A, B and C in given figure . . a) A-Stroma wall, B-Grana, C-Stroma b) A-Stroma lamella, B-Grana, C-Stroma c) A-Stroma lamella, B-Stroma, C-Grana d) A-Starch grain, B-Stroma, C-Grana 170. In photosystem II, the reaction centre chlorophyll-*a* absorbs ...A... nm wave length of red light causing electrone to become excited and jump into an orbit farther from the atomic nucleus. These electrons are picked up by an ...B..., which passes them to an electron transport system constisting of ...C... Pick the right choice for A, B and C a) A-680 nm, B-electron donor, C-cytochromes b) A-780 nm, B-electron acceptor, C-cytochromes c) A-680 nm, B-electron acceptor, C-cytochromes d) A-780 nm, B-electron donor, C-cytochromes 171. Which of the following statements with regard to photosynthesis is/are correct? I. In C_4 -plants, the primary CO_2 acceptor is PEP. II. In the photosynthetic process, PS-II absorbs energy at or just below 680 nm. III. The pigment that is present in the Pigment System-I is P_{683} . a) II and III only b) I only c) III only d) I and II only 172. Which one is correct for C₄-plants? **Bundle Sheath** Mesophyll a) PEPcase C₄-cycle RuBisCo C₃-cycle b) PEPcase Calvin cycle RuBisCo C₄-cycle c) RuBisCo C₄-cycle PEPcase C₃-cycle d) RuBisCo C₂-cycle PEPcase C₃-cyce 173. Synthesis of food in C_4 -pathway occurs in chlorophyll of a) Guard cells b) Bundle sheath cells c) Spongy mesophyll cells d) Palisade cells 174. Which one is the correct reaction of photosynthesis? a) $6CO_2 + 6H_2O \xrightarrow{\text{Light}} 6O_2 + C_6H_{12}O_6$ b) $6CO_2 + 12H_2O \xrightarrow{\text{Light}} + C_6H_{12}O_6 + 6O_2 + 6H_2O_6$ c) $C_6H_{12}O_6 + 6O_2 + 6H_2O \xrightarrow{\text{Light}} 6CO_2 + 12H_2O + \text{Energy}$ d) $C_6H_{12}O_6 + 6O_2 \xrightarrow{\text{Light}} 6CO_2 + 6H_2O + \text{Energy}$ 175. I. Lysosome II. Chloroplast III. Peroxisome IV. Mitochondria

Which of the follow	ing organelles is/are not re	lated to photorespiration?		
Choose the correct of		FFF		
a) Only I	b) I, IV and II	c) I, III and IV	d) Only IV	
		oose the correct option acco		
Atmospheric CO ₂			langiy	
Plasmo- desmata C_e acid C_g acid Transport C_e acid C_g acid C_e acid C_g acid C_e acid C_g acid C_e acid C_g acid	Cell wall			
	P. Fination C. Dundle about	h coll D Decemberry lation		
, .,	B-Fixation, C-Bundle sheat			
	, B-Decarboxylation, C-Bun			
	Decarboxylation, C-Bundle			
, i	Fixation, C-Bundle sheath c			
a) Von Helmont	iction and absorption spect b) Englemann	c) Emerson	d) Louision	
	ing is the formula of chloro		d) Lovoisier	
	b) $C_{55}H_{72}O_5N_4Mg$		d) C H O N Ma	
a) $C_{55}H_{70}O_2N_4Mg$	erated during photosynthes	c) $C_{55}H_{70}O_5N_4Mg$	d) C ₅₅ H ₇₂ O ₂ N ₄ Mg	
a) Carbon cells	b) Spongy cells	c) Palisade cells	d) Bundle sheath cells	
-		-	e photosynthetic organisms use	
0.1% of incident vis		Johr year if assumed that the	e photosynthetic organisms use	
a) 0.1015 tonn	b) 0.2015 tonn	c) 0.1123 tonn	d) 0.03 tonn	
	otochemical phase includes			
I. light absorption	otoenennear phase meruue.	5		
II. water splitting				
III. oxygen release				
IV. ATP and NADP f	ormation			
Select the correct of				
a) I, II and IV	b) I, II and III	c) I, III and IV	d) I, II, III and IV	
,	shown in a table representi			
In Out				
	lucose			
BATP ADP				
C NADPH NADP				
Choose the correct of				
		18 c) A-4 CO ₂ , B-12, C-18		
		as compared to sun plants be	ecause	
a) Herb, shrubs reco	•			
b) Herb, shrubs reco	_			
c) Herb, shrubs receive mere more green light				
d) Herb, shrubs receive more white light				
184. PEPcase has an advantage over RuBisCo. The advantage is				
a) RuBisCo combines with O_2 but PEPcase do not				
b) RuBisCo combines with NO_2 but PEPcase do not				
	e energy but PEPcase do no			
a) PEPcase is prese	iit in both mesophyll cells a	nd bundle sheath cells but R	UBISCO IS NOT	
			P a g e 15	

185. Activator of ribulose biphosphate carboxy		-
a) Mg ²⁺ b) Zn ²⁺	c) Ca ²⁺	d) SO ₄ ²⁻
186. Photolysis of water during photosynthesis		
a) PS-II b) PS-I	c) Ferredoxin	d) Cytochrome
^{187.} RuBP + $O_2 \xrightarrow{X} PGA$ + Phosphoglycolate.		
Identify x in the given equation and choose	e the correct option	
a) RuBP carboxylase b) RuBP oxygen	nase c) RuBisCo	d) PEP-carboxylase
188. Which one of the following is wrong in rela	ation to photorespiration?	
a) It is a characteristic of C_4 -plants		
b) It is a characteristics of C ₃ -plants		
c) It is occurs in chloroplasts		
d) It occurs in day-time only		
189. Flow of electrons in non-cyclic photo phos		
a) Unidirectional (from PS-I to PS-II)	b) Amphidirectional	
c) Bidirectional	d) Unidirectional (from	m PS-II to PS-I)
190. Priestley discovered oxygen in		
a) 1770 b) 1774	c) 1778	d) 1782
191. Which of the following is wrongly matched		
a) Sorghum – Kranz anatomy	b) PEP carboxylase – I	
c) Blackman – Law of limiting factors	d) Photosystem-II – P ₇	
192. Transport of C_4 acid from mesophyll cells		
a) Cell membrane b) Cell wall	c) Plasmodesmata	d) Osmosis
193. Maximum amount of photosynthesis occur		oint
a) Light compensation pointc) Saturation point	b) O ₂ compensation p d) Desaturation point	
194. Sunken stomata are usually found in	d) Desaturation point	
a) C_3 plants b) CAM plants	c) Insectivorous plant	s d) Phanerogams
195. I. In C_3 -plant, Calvin pathway takes place in		.5 uj i nanci oganis
II. In C_4 -plant, Calvin pathway takes place		
Which of the following statements true?		
Choose the correct option		
a) Statement I is incorrect, II is correct	b) Statement II is inco	rrect, I is correct
c) Both incorrect	d) Both correct	
196. C_3 -plant show optimum photosynthesis at		
a) High O ₂	b) High CO ₂	
c) Low 0 ₂	d) High temperature =	= 45°C
197. During C_4 -cycle, the acid formed are		
I. Picric acid II. OAA		
III. Malic acid IV. Aspartic acid		
Select the correct option		
a) I, II, III and IV b) II, III and IV	c) I, IV and II	d) I, III and IV
198. Consider the following statements regardi		
I. ATP formation during photosynthesis is	termed as photophosphorylation	
II. Kranz anatomy pertains to leaf.		
III. Reduction of NADP ⁺ to NADPH occurs	.	
IV. In a chlorophyll molecule, magnesium i		
a) I and II correct	b) III and IV are corre	ct
c) I and III are correct	d) I and IV correct	
199. Presence of bundle sheath is a characterist		:l
a) Xerophytic plants	b) Members of grass f	-
		Page

c) C₄-plants d) C₃-plants 200. Oxygenic photosynthesis occurs in a) Chromatium b) Oscillatoria c) Rhodospirillum d) Chlorobium 201. I. They have special leaf anatomy II. They tolerate high temperature **III.** Lack photorespiration IV. Greater productivity of biomass These are the probable characters of a) C₂-plant b) C₃-plant d) Any plant c) C₄-plant 202. In which region, most of the photosynthesis takes place? b) Violet and indigo region a) Red and green region c) Blue and red region d) Blue and black region 203. In an experiment demonstrating the evolution of oxygen in *Hydrilla*, sodium bicarbonate is added to water in the experimental set-up. What would happen if all other conditions are favorable? a) Amount of oxygen evolved decreases as carbon dioxide in water is absorbed by sodium bicarbonate b) Amount of oxygen evolved increases as the availability of carbon dioxide increases c) Amount of oxygen evolved decreases as the availability of carbon dioxide increases d) Amount of oxygen evolved increases as carbon dioxide in water is absorbed by sodium bicarbonate 204. Who proposed that O_2 comes from water instead from CO_2 during photosynthesis? c) Blackman a) Von Neil b) Engelmann d) Warburg 205. Which equation is correct to prove that O_2 comes from water during photosynthesis? a) $6CO_2^{18} + 12H_2O \rightarrow 6O_2^{18} + C_6H_{12}O_6 + 6H_2O$ b) $6CO_2 + 12H_2O^{18} \rightarrow 6O_2 + C_6H_{12}O_6 + 6H_2O^{18}$ c) $6CO_2^{18} + 12H_2O \rightarrow 6CO_2^{18} + C_6H_{12}O_6$ d) $6CO_2 + 12H_2O^{18} \rightarrow 6O_2^{18} + C_6H_{12}O_6 + 6H_2O_6$ 206. The components of PS-I are located on the b) Stroma thylakoid a) Stroma c) Granum thylakoid d) Outer surface of stromal and granal thylakoid 207. Cyclic photophosphorylation occurs in b) Appressed part of grana lamellae a) Stroma lamellae c) Stroma cell wall d) Grana cell wall 208. Identify from the following, a characteristic pigment, which contains copper containing protein a) Plastoquinone b) Ferredoxin c) Cytochrome d) Plastocvanin 209. I. The electrons that carriers photophosphorylation are located in the thylakoid membrane II. During photophosphorylation, the chloroplast stroma becomes more acidic than the interior of thylakoid membrane III. Protons diffuses through the protein channels which are ATP synthetase molecules IV. ATP is formed from ADP + Pi on the stroma side of the thylakoid in the chloroplast V. During photophosphorylation, water ionises to form H⁺, yielding electrons to PS-II Which of the following statement are false? b) III and IV c) IV and V d) Only II a) I and II 210. Which of the following elements is an activator for both Ribulosebisphosphate carboxylase oxygenase and phosphoenol pyruvate carboxylase in photosynthetic carbon fixation? b) Zn²⁺ c) Ca²⁺ a) Mg²⁺ d) SO_4^{2-} 211. Who experimentally proved that source of oxygen during photosynthesis is water? a) Van Niel b) Robin Hill c) Arnon d) Emerson 212. Warburg effect is the b) Inhibition of C₂-cycle by O₂ a) Inhibition of C_4 -cycle by O_2 c) Inhibition of C_3 -cycle by O_2 d) Inhibition of C_3 -cycle by CO_2 213. Oxaloacetic acid changes to the malic acid by the action of

a) Oxaloacetic dehydrogenase		b) Malic dehydrogenase	
c) PEP dehydrogenase		d) RMP dehydrogenase	
214. Consider the following st			
	trum between 300-500 nm	n is also referred to as Phot	osynthetically Active
Radiation (PAR).			
_	nd chloride ions play prom		
	norylation, oxygen is not re	leased (as there is no photo	olysis of water) and NADPH
is also not produced.	ara falca	h) I and II and falses hert I	Il ic truc
a) I is true; but II and III		b) I and II are false; but I	
c) II is true; but I and III		d) I and II are true; but II	
215. When two photosystem a) Cyclic	b) Non-cyclic	c) Bicyclic	d) Both (a) and (b)
216. The ATPase enzyme cons		cj bicyclic	uj bour (a) allu (b)
I. F_0 II. F_1 III. F_2	51515 01		
Select the correct option			
a) I and III	b) I and II	c) Only I	d) II and III
217. Chemiosmosis requires	oj i uliu li	<i>c</i> _j <i>c</i> _{in} , i	aj 11 unu 111
I. a membrane			
II. a proton pump			
III. a proton gradient			
Select the correct option			
a) II and III	b) I and III	c) I and II	d) I, II and III
218. Biosynthetic phase of ph	-	•	-
I. NADPH II. NADH			
III. ATP IV. $NAD^+ + H$	I+		
a) I and III	b) IV and I	c) I and VI	d) IV and II
219. Kranz anatomy is the cha	aracteristics of		
a) C ₅ -plants	b) C ₃ -plants	c) C ₂ -plants	d) C ₄ -plants
220. In which type of reaction	is related to plant photosyn	ithesis peroxisomes are inv	volved?
a) Glycolate cycle		b) Calvin cycle	
c) Bacterial photosynthe	sis	d) Glyoxylate cycle	
221. Photosynthesis is a			
a) Catabolic process	b) Anabolic process	c) Amphibolic process	d) Catalytic process
222. Beyond of saturation poi	nt, the photosynthesis begi	ns to decline because of	
I. Photo inbibition			
II. Photo-oxidation			
III. Photo-reduction			
, <u> </u>	which matches with state		
a) I and III	b) III and II	c) I, II, and III	d) I and II
223. A chemical substance wh	=		-
a) Luminescent	b) Fluorochrome	c) Bioluminescence	d) Metachrome
224. Identify A, B and C in the c	given figure of cyclic phosp	phorylation and choose the	correct option accordingly
(e' acceptor			
(Light)			
B			
Chlorophyll P ₇₀₀			
a) A-ETS, B-ADP + Pi $\rightarrow I$	ΔΤΡ Γ-Ρς-ΙΙ	b) A-ETS, B-ADP + Pi $\rightarrow A$	атр С-рс-і
c) A-NADH ₂ , B-ADP + Pi		d) A-NADH ₂ , B-ADP + Pi	
1			Page 18

225. Chlorophyll- <i>a</i> and <i>b</i> diffe	0		
	ethyl group and chlorophyl		
<i>b</i> has aldehyde group	•		thyl group in position X
	arboxyl group and		thyl group and Chlorophyll-
	aldehyde group in position 2		ip in position X
226. Of the total incident sola	= =		
a) About 60%	b) Less than 50%	c) More than 80%	d) About 70%
227. Who discovered that light	-		
a) Stephen Hales	b) Lavoisier	c) Jan Ingenhousz	d) Von Helmont
228. How many Calvin cycles		-	1) 00
a) 60	b) 15	c) 30	d) 90
229. During light reaction of p			
a) ADP is phosphorylate			
b) ADP is phosphorylate			
c) ADP is phosphorylate			
d) ATP is phosphorylate			
230. The ATP production in p a) Phototropism	notosynthesis is called	h) Dhaanhawdatian	
c) Photooxidation		b) Phosphorylationd) Photophosphorylation	
231. Who described the first	action spactrum of photosy	, , ,	
a) Sachs	b) Engelmann	c) Arnold	d) Von Helmont
232. Who provided the evide		,	uj von nemioni
a) Julius von Sachs	b) Stephen Hales	c) Lavoisier	d) Von Helmont
233. Which of the following is	, i	•	uj von nemon
a) <i>Spirogyra</i>	b) <i>Volvox</i>	c) <i>Chlamydomonas</i>	d) <i>Chlorella</i>
234. The movement of electro	,		aj omorena
a) Up hill in terms of red	_	b) Down hill in terms of r	edox reaction
c) Either (a) or (b)		d) Both (a) and (b)	
235. The wavelength of light	absorbed by Pr from of phyt		
a) 640 nm		c) 720 nm	d) 620 nm
236. In C_4 - plants, the carbon		,	,
a) Guard cells	b) Spongy cells	c) Palisade cells	d) Bundle sheath cells
237. What is the name given	, , , ,,	•	-
chloroplast?			
a) Thylakoids	b) Granum	c) Stroma	d) Mesophyll cells
238. C_4 -plants are more efficient	ent in photosynthesis than	C_3 plants due to	
a) Higher leaf area			
b) Presence of larger nu	mber of chloroplasts in the	leaf cells	
c) Presence of thin cutic	le		
d) Lower rate of photore	espiration		
239. Which of the following is	s maximum in chloroplast?		
a) RuBP carboxylase	b) Hexokinase	c) Phosphatase	d) Nuclease
240. Photolysis of water relea	ases		
I. electron			
II. proton			
III. oxygen			
Select the correct option	l		
a) I and II	b) II and III	c) I and III	d) I, II and III
241. Which of the following c	haracteristics out of I, II, III,	IV are exhibited by C ₄ -plan	nt?
I. Kranz anatomy			
			Page 19

II. Oxaloacetic ac			
III. Large bundle	sheath cells		
IV. Found only in	desert area		
a) I, II and III	b) I, II and IV	c) II, III and IV	d) III, I and IV
242. In C_4 -plants, the	bundle sheath cells		
a) Have cells den	isity of chloroplast	b) Are rich in PE	Pcase
c) Have large nu		d) Are large size	d having transferase
243. The Z scheme of	electron transport is		
a) Cyclic photopl	nosphorylation	· · ·	otophosphorylation
c) Both (a) and (b)	d) Where only pl	hotosystem pigment-I is involved
	lation in chloroplast is most si		
a) Mitochondrial	substrate level phosphorylati	ion	
-	oxidative phosphorylation		
c) Mitochondrial	hydrolysis of H_2O		
d) All of the abov	'e		
245. I. Chlorophyll-a			
II. Chlorophyll-b			
III. Xanthophyll			
IV. Carotenoid			
	en pigments into the accessory	and main pigments inv	olved during photosynthesis
	ccessory Pigment		
a) I	II, III, IV	b) II, III and IV	Ι
c) II and III	I and IV	d) I and IV	II and III
	s, energy from light reaction to		
a) ADP	b) ATP	c) RuBP	d) chlorophyll
	ns oxygenase activity at		
a) Low CO ₂ conc		b) High CO ₂ cond	
c) High H_2O con		d) Low H ₂ O cond	centration
248. Primary acceptor			
a) PGA	b) PEP	c) RuBP	d) OAA
	n cells are the large cells aroun		
a) Vascular bund		b) Vascular bund	
c) Vascular bund		d) All of the abov	
	owing is the first compound th	hat accepts carbon dioxi	de during dark phase of
photosynthesis?			
a) NADP	b) RuBP	c) Ferredoxin	d) Cytochrome
	xylation occurs in Calvin cycle		
a) Zero	b) One	c) Two	d) Three
=	o low light intensity have	1.	
	ynthetic unit size than the sun	=	
	carbon dioxide fixation than t	the sun plants	
c) More extende	-		
d) Leaves modifi	-		
		water, which molecule	(photosynthesis product) will
	ive from the given options		ፈ) ለመን
a) O_2	b) H ₂ O	c) CO ₂	d) ATP
	pectrum of photosynthesis wa		
a) Algae	b) Mint plant	c) Bacteria	d) Bryophytes
	ecule of glyceraldehydes phos		ADDH are required
aj 9 ATP allu 36	NADPH are required	J O A I P allu O N	ADPH are required
			Page

c) 3 ATP and 3 NADPH are required d) 9 ATP and 6 NADPH are required 256. Products of light reaction are ATP and O₂, of these, B... diffuses out of the chloroplast, while ATP and NADPH are used to derive the process leading to the synthesis of food more accurately, ...C..., What does the blanks A-C refers here? a) A-NADP; B-O₂; C-lipid b) A-NADPH₂; B-O₂; C-amino c) A-NAD⁺; B-O₂; C-sugars d) A-NADPH + H^+ ; B-O₂; C-sugars 257. Light compensation point is the point where a) Gaseous exchange occurs in photosynthesis b) Gaseous exchange do not occur in photosynthesis c) Gaseous exchange reduce in photosynthesis d) Light intensity become appropriate for photosynthesis 258. During the dark reaction, the acceptor of CO_2 is a) NADPH₂ b) RuBP d) CO_2 c) H_20 259. During photorespiration, the oxygen consuming reaction(s) occur in a) Stroma of chloroplasts and mitochondria b) Stroma of chloroplasts and peroxisomes c) Grana of chloroplasts and peroxisomes d) Stroma of chloroplasts 260. Which one of the following concerns Photophosphorylation? b) AMP + Inorganic PO₄ $\xrightarrow{\text{Light energy}}$ ATP a) ADP + Inorganic $PO_4 \rightarrow ATP$ d) ADP + Inorganic PO₄ $\xrightarrow{\text{Light energy}}$ ATP c) $ADP + AMP \xrightarrow{\text{Light energy}} ATP$ 261. In an experiment, chloroplasts were made acidic by soaking them in acidic solution. What will happen if this chloroplast is transferred to a solution having basic pH? a) ATP formation takes place b) No ATP formation takes place c) NAD formation takes place d) Sugar formation takes place 262. Choose the correct combination of labeling the carboxydrate molecule involved in the Calvin cycle. a) A-RuBP, B-Triose phosphate, C-PGA b) A-PGA, B-RuBP, C-Triose phosphate c) A-PGA, B-Triose phosphate, C-RuBP d) A-RuBP, B-PGA, C-Triose phosphate 263. If the light becomes unavailable during photosynthesis then a) Immediately biosynthetic process stops b) Biosynthetic phase does not stops c) Biosynthetic phase stopes forever d) Biosynthetic phase continues for some time and then stops 264. I. In photosynthesis, the proton accumulation is towards the inside of membrane of thylakoid II. In respiration, proton accumulation occurs in the inter membrane space of the mitochondria Select the correct option a) Statement I is incorrect II is correct b) Statement II is incorrect I is correct c) Both Statement I and Statement II incorrect d) Both Statement I and Statement II are correct 265. Chloroplasts without grana are known to occur in a) Bundle-sheath cells of C₃-plants b) Mesophyll cells of C₄-plants

c) Bundle-sheath cells of C_4 -plants		
d) Mesophyll cells of all plants		
266. PGA, the first carbon dioxide fixation product was firstly	y discovered in	
a) Bryophytes b) Pteridophytes c)	Angiosperms	d) Alga
267. Liberation of oxygen when green cells in water are expo	osed to sunlight in preser	nce of suitable acceptor is
called		
	Emerson's enhance effe	ct
	Hill's reaction	
268. Fixation of one molecule of CO_2 requires how much (in (
	•	d) 3/2
269. In half leaf experiment, a part of a leaf is enclosed in a te other half is exposed to air and then setup is placed in lig leaf which was exposed to air tested positive for starch.a) Light is essential for photosynthesis	ght for sometime. It was	
b) Oxygen is liberated in photosynthesis		
c) Water is essential for photosynthesis because in KOH		hesis do not occurs as
water reacts with KOH and it become unavailable for		
Carbon dioxide is essential for photosynthesis becaus		arch synthesis do not
occurs as CO_2 is absorbed by, so CO_2 is not available f	for photosynthesis	
270Is a CAM plant.	Onion	d) Dec
	Onion	d) Pea
271. Every CO₂ molecule entering the Calvin cycle needsa) 2 molecule of NADPH and 3 molecule of ATP for its fix	vation	
b) 2 molecule of NADPH and 2 molecule of ATP for its fix		
c) Variable amount of ATP	Auton	
d) Only NADPH		
272. Proton gradient is very important across the membrane	e because	
a) Building up of proton gradient release energy		
b) Building up of proton gradient increase the pH towar	ds lumen side of thylako	id membrane
c) Breakdown of proton gradient release CO_2	-	
d) Breakdown of proton gradient release energy		
273. The first acceptor of electrons from an excited chlorophy	yll molecule of	
Photo system-II is		
a) Cytochrome b)	Iron-sulphur protein	
c) Ferredoxin d)	Quinine	
274. Substance which is essential for the respiration as well a	as photosynthesis is	
a) Cytochrome b) RuBisCo c)	Plastocyanin	d) Ubiguinine
275. Which of the following is a 4-carbon compound?		
	Phosphoglyceric acid	
	Phosphoenol pyruvate	
276. A graph that plots the rate at which CO_2 is converted to illuminating a leaf is called	glucose <i>versus</i> the wave	elength of light
	An adsorption spectrum	1
	An action spectrum	
277. Water stress makes plant leavesA thus,B the sur	rface area of leaves and t	heir metabolic activity as
well		
Here A and B refer to		
		d) A-fall, B-increases
278. Which plant performs photosynthesis even after the close	-	D C
a) C ₂ b) C ₃ c)	C ₄	d) C ₅

279 During nhotorecoirati	on the conversion of phose	hoglycolate to glycolate t	akes place in this cell organelle.
a) Mitochondria	b) Glyoxysome	c) Peroxisome	d) Chloroplast
280. The chemical formula		cj i croxisonic	u) entoropiase
a) $(C_6H_{10}O_5)_n$		c) C ₁₂ H ₂₂ O ₁₁	d) CH ₃ COOH
281. Emerson effect explai			
a) Transpiration		b) Absorption of wate	er by roots
c) Photosynthesis		d) Respiration	51 59 10005
	visible spectrum of solar ra		sorbed by carotenoids of the
higher plants?			
a) Red and violet	b) Violet and blue	c) Blue and green	d) Green and red
	plants is relatively less limit	, ,	•
	are the initial carbon dioxide		on of carbon dioxide is
acceptors		mediated via PEP c	
-	of CO ₂ into bundle sheath ce		its has higher affinity for CO_2
284. CAM-plant among the		у т <u>т</u>	0 2 2
a) Maize	b) <i>Kalanchoe</i>	c) Sugarcane	d) Wheat
	ound from the given option		2
a) RuBP	b) OAA	c) 3PGA	d) NADPH ₂
286. The functions of chlor	oplast of membrane system	is	
a) Trapping of light er	nergy	b) Synthesis of ATP	
c) Synthesis of NADPI	ł	d) All of these	
287. Photophosphorylation	n differs from oxidative pho	sphorylation in requiring	input of energy in the from of
a) Light	b) Heat	c) AMP	d) NAD
288. Cyclic phosphorylatio	n occurs at which waveleng	th	
a) Wavelength beyon	d 800 nm	b) Wavelength beyon	d 680 nm
c) Wavelength below	680 nm	d) Wavelength below	500 nm
289. If there is mutation in	cytochrome system then th	is will	
a) Inhibit he moveme	nt of electrons from PS-II to	PS-I	
b) Inhibit the moveme	ent of electrons from PS-I to	PS-II	
c) Inhibit the photoly	sis of water		
d) Promote ATP form			
	ectly explained by the equa	tion	
·	$L_6H_{12}O_6 + 6O_2 + 6H_2O_6$	b) $6CO_2 + 6H_2O \rightarrow C_6$	$_{5}H_{12}O_{6} + 6O_{2} + 6H_{2}O_{6}$
c) $6CO_2 + 6H_2O \rightarrow C_6$	12 0 2	d) $2CO_2 + 12H_2O \rightarrow O_2$	$C_6H_{12}O_6 + 2CO_2$
	g elements are essential for		
a) Ca and CI	b) Mn and CI	c) Zn and I	d) Cu and Fe
292. The electrons in the re			
a) Excited simultaneo		b) Excited simultaned	ously with P ₆₈₀
c) Excited simultaneo		d) Either (a) or (b)	
293. In plants, glycolate me	_		
a) Low concentration		b) High concentration	
c) Low concentration		d) Absence of oxygen	
	nselves in the mesophyll cel	-	
a) Antiparallel to the		b) Perpendicular to th	ne cell wall
c) Parallel to the cell v		d) Middle in the cell	
	of RuBP are required to pro		
a) 20	b) 40	c) 60	d) 80
	e Calvin cycles, which of the		tor the following question?
	AL molecules are produces		1 0
II. Total, how many A	TP molecules are required for	or synthesis of PGAL mole	cules?

II. Total, how many NADPH ₂ molecules are require	=	
a) I-3PGAL, II-3 ATP, III-3 NADPH ₂	b) I-6 PGAL, II-6 ATP, III-6 NADPH ₂	
c) I-18 PGAL, II-18 ATP, III-18 NADPH ₂	d) I-9 PGAL, II-9 AT	P, 111-9 NADPH ₂
297. Which of the following statements regarding C_4 -pl		
a) The primary CO_2 acceptor is a 5-carbon molecu		
b) The initial carboxylation reaction occurs in Mes c) The leaves that fix CO_2 have two cell types	борнун	
d) The Mesophyll cells lack Rubisco enzyme		
298. CAM pathway is observed in		
a) Pineapple b) Maize	c) Sunflower	d) Sugarcane
299. Scientist believed that since the first product was	,	, ,
compound; they spent many years trying to identi		-
carbon compound (RuBP).		a before they also verea
Complete the given statement with the correct cor	nhination of options	
a) A-C ₃ ; B-2, C-5 b) A-C ₃ ; B-5, C-2	c) A-C ₄ ; B-5, C-2	d) A-C₄; B-2, A-5
300. I. Photosystem-I is a photosynthetic pigment syste	<i>y</i> 1	
II. Photosystem-II is a photosynthesis pigment loc	= =	
Identify wheather the given statements are correc		
a) Statement I is correct, while II is incorrect		orrect, while I is incorrect
c) Both statements are correct	d) Both statements	
301. Biosynthetic phase is called as dark reaction becau	•	
a) It depends on the light reaction		nds on the light reaction
c) It does not depends on NADPH	d) It does not deper	_
302. What percentage of solar radiation that hits the ea		
a) 92% b) 2%	c) 42%	d) 22%
303. CO_2 released in bundle sheath is used in the		
a) $\overline{C_4}$ -cycle	b) C ₃ -cycle	
c) Respiration	d) Sugar break dow	/n processes
304. Photophosphorylation is the		
a) Formation of ADP in the presence of light		
b) Formation of ATP in the presence of chemicals		
c) Formation of ATP in the presence of light		
d) Formation of ATP in the presence of reducing a	gents	
305. During photosynthesis,		
a) Oxygen evolved comes from carbon dioxide		
b) ATP is formed		
c) ATP is not formed		
d) Water is required as medium but it does not tak	ke part in photosynthes	sis
306. Cytochrome oxidase is a/an		
a) Exoenzyme b) Endoenzyme	c) Proenzyme	d) Coenzyme
307. Electrons are transferred by splitting of H_2O throu		action and reduces
a) NAD to NADH + H^+	b) NADPH to H ⁺	
c) NADP ⁺ to NADPH + H ⁺	d) NAD to NADPH -	+ H ⁺
308. Cytochrome oxidase contain	. –	
a) Fe b) Mg	c) Zn	d) Cu
309. Basic features of Kranz anatomy of C_4 -plant is pre-		
a) Chloroplast in bundle sheath cells		esophyll and epidermal cells
c) Typical granal chloroplasts in bundle sheath cells d) Rudimentary chloroplasts in bundle sheath cells		
and rudimentary chloroplasts in mesophyll cell	s and typical grana	al chloroplasts in mesophyll cells
310. The first product of CO_2 fixation in C_4 pathway is		
		D

a) Acitic acid	b) RuBP	c) PGA	d) Inorganic acid
311. Photochemical rea	ctions in the chloroplasts are	directly involved in	
a) Fixation of carbo			
b) Synthesis of glue			
	osphoglyceric acid		
	ater and phosphorylation of A		
-	s solar energy most efficiently		
a) Potato	b) Sugarcane	c) Wheat	d) Rice
313. I. CO_2 is assimilate	_		
II. RUBP is regener			
III. ATP and NADP		,	
	option in context to Calvin cyc		
a) I and II	b) II and III	c) I and III	d) I, II and III
	carrier molecules are oxidise		
a) Nucleus		b) Mitochondria and o	chloroplast
c) Nucleus	:	d) Golgi body	
	g complex is associated with		d) Varatharahadi
a) PS-I	b) PS-II	c) Carotenoid	d) Xanthophyll
	-I) and Photosystem-II (PS-II)		malagular waight
c) In the sequence	they work in light reaction	b) According to their	_
	ng of glucose phosphate form	d) In the sequence of	
a) Warburg's effect		c) Gibb's effect	d) Dicken's effect
, ,	by the splitting of water in lig		-
	ynthesis accumulates within t		sis accumulates within the
a) Lumen of thylak		b) Intermembrane of	chloroplast
c) Stroma of chloro		d) Outside the lumen	-
	ent in the reaction centre of p	=	or mynakolas
a) Chlorophyll- <i>a</i>	b) Chlorophyll- <i>b</i>	c) Chlorophyll- <i>c</i>	d) Chlorophyll- <i>d</i>
	s the light dependent reaction	, ,	
•	ease of H_2O takes place	b) Oxygen and release	e of H ⁺ takes place
	ease of CO_2 takes place	d) Oxygen and release	_
, , , , ,	etic pigment is called univers		-
a) Chlorophyll- <i>a</i>	b) Chlorophyll- <i>b</i>	c) Chlorophyll- <i>c</i>	d) Chlorophyll- <i>d</i>
322. I. PS-I has more ch	lorophyll- <i>a</i> than chlorophyll-	,	5 1 0
II. PS-II has more c	hlorophyll- <i>b</i> than chlorophyl	l-a	
Choose the correct	option		
a) I statement is w	rong, II is right	b) II statement is wro	ng, I is right
c) Bot statements	are wrong	d) Both statements ar	e right
323. Photosynthesis is a	ł		
a) Physico-chemica	al process	b) Physical process	
c) Chemical proces	SS	d) Constructive proce	SS
324. The C_4 -plants are p	photosynthetically more effici	ent than C ₃ -plants because	
a) The carbon diox	ide compensation point is mo	ore b) Carbon dioxide ger	nerated during
		photorespiration is	s trapped and recycled through
		PEP carboxylase	
	tide efflux is not prevented	d) They have more ch	loroplasts
	chloroplast. This statement s	uggest the idea	
-	possesses chloroplast		
b) All the life form	depend on photosynthesis		
			Page 25

c) All the life form is plant		
d) Plants are the first organism on earth		
326. Which of the following characteristics out of A	A, B and C are exhibited by C_4 -	plants?
V. Kranz anatomy		
VI. The product of photosynthesis is oxaloace		
VII. Both PEP carboxylase and ribulose-bispho		
a) Only A and B, but not C	b) Only B and C, but n	ot A
c) Only A and C, but not B	d) All A, B and C	
327. Hexose monophosphate pathway takes place		
a) Endoplasmic reticulum	b) Cristae	
c) Cytoplasm	d) Mitochondrial mat	
328. The energy required to hydrolyse water durin		
a) Reduced chlorophyll b) Proton gradient		rll d) ATP
329. Chloroplast dimorphism is a characteristic fea	ature of	
a) Plants with Calvin cycle		
b) C ₄ -plants		
c) All plants		
d) Only in algae	rstom Lis	
330. The trapping centre of light energy in photosya) P₆₆₀b) P₇₀₀	c) P ₆₈₀	d) P ₆₃₀
331. ATP and NADPH produced in light reaction by		
a) Oxidation of carbohydrate	b) Synthesis of sugar	TETC are used minieurally for
c) Reduction of carbon dioxide	d) Both (b) and (c)	
332. Electrons which gets excited in PS-I must repl		nately come from
a) ATP b) H_2O	c) PS-II	d) NAD
333. Select the correct pathway for electron transp	-	
a) $CO_2 \rightarrow RUBP \rightarrow Glucose-ATP$	b) $H_2O \rightarrow PS-I \rightarrow PS-I$	$I \rightarrow NADPH \rightarrow H^+$
c) $H_2O \rightarrow PS-II \rightarrow PS-I \rightarrow NADPH \rightarrow H^+$	d) $H_2 O \rightarrow PS-II \rightarrow PS-II$	
334. Photorespiration in C_3 -plants starts from		
a) Phosphoglycerate b) Phosphoglycola	te c) Glycerate	d) Glycine
335. Photosynthesis is		
I. Endergonic process		
II. Exergonic process		
III. Chemical process		
IV. Physical process		
Select the correct option		
a) II, III and IV b) I, III and IV	c) I, II and IV	d) I, II and III
336. Compensation point refers to		
a) Little photosynthesis	b) Beginning of photo	synthesis
c) Rate of photosynthesis equals to the rate of	f d) None of the above	
respiration		
337. In Z-scheme of light reaction the, participating	g pigment system are	
I. PS-I II. PS-II III. PS-III		
IV. Carotenoid and xanthophyll		
Choose the correct option		
a) I and II b) I, II and III	c) I, III and IV	d) II and III and IV
338. Function/s of accessory pigments is/are		
I. They enable wider range of wavelength of in		sis
II. They absorb light and transfer the energy t		
III. They protect reaction centre from photo-o	oxidation	
		Page 26

Select the correct op			
a) I and II	b) II and III	c) Only I	d) I, II and III
=	on dioxide required for photos	ynthesis enters the plant b	oody during
a) Day time through			
	e stomata, which are kept open		
c) Day time when th	_		
d) Night when the h	ydathodes are open		
340. Water is			
a) Produced in dark	reaction	b) A reactant in light re	eaction
c) Both (a) and (b)		d) Involve nowhere in	photosynthesis
341. In C_3 plant, when O_2	$_{\rm 2}$ concentration is more, the $\rm O_2$	binds to Rubisco and RuB	P gets changed to
a) 2 molecules of PC	GA		
b) 2 molecules of ph	osphoglycerate		
c) 2 molecules of ph	osphoglycolate		
d) One molecule eac	ch of phosphoglycerate and pho	osphoglycolate	
342. Within the chloropla	ast, the chlorophyll pigments a	re organized in the form of	f
a) PS-I	b) PS-II	c) PS-III	d) Both (a) and (b)
343. Conversion of pyruv	vate into PEP takes place in		
a) Mesophyll cell cy	toplasm	b) Mesophyll cell chlor	oplast
c) Bundle sheath ce	ll chloroplast	d) Bundle sheath cell cy	ytoplasm
	performed by plant pigments?		-
a) Absorb CO_2	b) Absorb O ₂	c) Absorb H_2O	d) Absorb light
-	uantity of oxygen evolution du	, -	, ,
=	elength more than 680 nm		
	elength less than 680 nm		
c) Light having wav	_		
	elength less than 360 nm		
	ed with photorespiration are		
	chondria, peroxisome		
b) Chloroplast, mito	-		
<i>y</i>	roxisome, centrosome		
d) Nucleus, centroso			
	oplasts of higher plants contain		
a) Light-independer		b) Light-dependent rea	ction enzymes
c) Ribosomes		d) Chlorophyll	letion enzymes
	of CO_2 in atmosphere is between	, , ,	
a) 0.03-0.04%	b) 300-400 ppm	c) 400-600 ppm	d) Either (a) or (b)
,	eA accumulation. Blue light	,	
Here A and B refer t	_	accullu	1441011
a) A-Starch; B-lipid	U	b) A-lipid; B-starch	
c) A-carbohydrate;	R cholostrol	d) A-carbohydrate; B-p	rotoin
		u) A-cai bollyul ate; b-p	lotem
	of chloroplast are found in		d) Chart tin
a) Root	b) Stem	c) Leaves	d) Short tip
-	t of assimilatory power for the	ior mation of o nexose mo	iecules in maize plant is
a) 72 ATP, 48 NADP			
b) 90 ATP, 60 NADP			
c) 108 ATP, 72 NAD			
d) 180 ATP, 72 NAD		aio duning doub	-
	t stable product of photosynthe		
a) PGAL	b) RuBP	c) PGA	d) OAA
			Page

353. The form of pigment v	vhich promotes germination	is	
a) P ₇₆₀	b) P ₇₃₀	c) P ₆₅₀	d) All of these
	en evolved in photosynthesi		
a) Calvin	1 5	b) Mayer	
c) Blackman		d) Ruben, Hassid and K	lamen
355. Compensation point r	efers to	-	
a) Rate of photosynth	esis = Rate of respiration		
b) Rate of photosynth	esis = Rate of H_2O splitting		
c) Rate of photosynth	esis = PGA formation		
d) Rate of photosynth	esis = RuBP formation		
356. Living organisms have	e the capability of extracting	energy from	
a) Reducible substanc	es	b) Oxidising substances	S
c) ADP		d) AMP	
	cid in the bundle sheath cells	?	
a) Aspartic acid is dea	minated	b) Malic acid decarboxy	ylated
c) Either (a) or (b)		d) Both (a) and (b)	
358. Porphyrin is made up			
a) One	b) Two	c) Three	d) Four
		xidation of photosynthetic	c intermediates with the help
of oxygen, the substra			
a) Glycolate	b) Glucose	c) Pyruvic acid	d) Acetyl Co-A
360. Non-cyclic phosphory	lation occurs in		
I. stroma lamellae			
II. grana lamellae			
III. chloroplast membr			
Select the correct opti		a) Land III	d) Orales II
a) Only I	b) II and III	c) I and III	d) Only II
a) Calvin cycle	efficiency of carbon dioxide f b) Hatch and Slack cycle		d) Greater sunlight
	le) is the fixation of CO_2 into	· ·	uj dreater sunight
a) Amino acid	b) Cholesterol ring	c) Proteins	d) Organic intermediate
-	acid and oxaloacetic acid bot	•	aj organie intermediate
a) Mesophyll cell		b) Bundle sheath cell	
c) Bundle sheath cell	wall	d) Mesophyll cell wall	
364. Photorespiration coul			
a) C ₃ -plants	b) C₄-plants	c) Both (a) and (b)	d) None of these
365. Maximum CO ₂ fixation	,	, , , , ,	,
a) Green plants	b) Phytoplanktons	c) Zooplanktons	d) Bacteria
366. Grana is ill developed	or absent in the chloroplast	in the	-
a) Stem of <i>Hydrilla</i>	_	b) Leaf of sunflower	
c) Bundle sheath of su	igarcane leaf	d) Mesophyll of grasses	S
367. Aldolase enzyme is pr	esent in		
a) Mitochondria		b) Chloroplast	
c) Lysosomes d) Endoplasmic reticulum		um	
368. Photosynthetic enhan	cement with flashing light w	as first observed by	
a) Benson and Calvin		b) Hill and Calvin	
c) Hatch and Slack		d) Emerson and Arnold	
	tion of every CO ₂ molecules,		
	H_2 b) 2 ATP and 2 NADP H_2	c) 2 ATP and 3 NADPH	$_2$ d) 3 ATP and 3 NADPH $_2$
370. Synthesis of one mole	cule of glucose requires		

383. Formation of ATP in mite	ochondria is called							
a) Mitochondria	Jenonulla is caneu	b) Hydrolysis						
c) Oxidative phosphoryl	ation	d) Photophosphorylation						
384. Raphides are crystals of		aj i notopnosphorylatic						
a) Calcium carbonate		b) Calcium oxalate						
c) Magnesium carbonate		d) Magnesium oxalate						
385. Nucleus/core of the chlo		a) Magnesiani oxalate						
a) Fe	b) Mn	c) Mg	d) CH ₃					
386. $(C_5 H_{10} O_5)_n$ is the formu	,	0) 118						
a) Protein	b) Fat	c) Lipid	d) Carbohydrate					
$387. C_4$ - plants differ from C_3	,	oj zipia	a) can bony anaco					
a) Number of CO_2 molec								
b) Substrate, which acce								
c) The final product								
d) Number of ATP forme	d							
388. ATP synthesis is linked t								
5	ure gradient across memb	rane						
	tic gradient across membr							
	n gradient across membra							
	on gradient across membr							
389. Which of the following is	-							
a) Sugar	b) Phosphoglycolate	c) NADPH	d) ATP					
390. Photosynthesis is maxin	, , ,,	-)						
a) Green light		b) Blue followed by red	right					
c) Red followed by blue	light	d) Blue light	0					
391. Large number of chlorop	-							
a) Parenchymatous cell	b) Mesophyll cell	c) Peroxisomal cell d) Cell wall						
392. What is common betwee	, ,	,	5					
a) Presence of pigments		1						
b) Possession of thylako	ds and grana							
c) Storage of starch, prot	-							
d) Ability to multiply by	-							
393. Which of the following is	=							
a) Reduction of CO_2 and	water	b) Oxidation of CO ₂ and	water					
c) Reduction of CO_2 and	oxidation of water	d) Oxidation of CO_2 and reduction of water						
394. RuBisCo is found in		-						
a) Cytoplasm	b) Nucleus	c) Mitochondria	d) Chloroplast					
395. In C_4 -plants the bundle s	heath cells							
a) Have thin walls to faci	litate gaseous exchange							
b) Have large intercellula	ar spaces							
c) Are rich in PEP carbox	xylase							
d) Have a high density of	chloroplasts							
396. Find out the reason that	creates an important diffe	rence between C ₃ and C ₄ -p	olant					
a) Photorespiration	b) Calvin cycle	c) Glycolysis	d) Pressure of cuticle					
397. ATPase has								
a) Channel that allows H	⁺ diffusion	b) Has channel that allo	ws electron diffusion					
ک Channel that allows d	iffusion O ₂ molecule	d) Channal that allows (
c) diffusion		d) Channel that allows (
398. In dark reaction, regener	ation of RuBP needs							
a) 2 molecule of ATP	b) 1 molecule of ATP	c) 3 molecule of ATP	d) 4 molecule of ATP					
			P a g e 30					
			- 46 C 30					

399. Rubisco has the activ	e site that binds to								
a) CO ₂	b) 0 ₂	c) Either (a) or (b)	d) NO ₂						
400. RuBP + CO ₂ $\xrightarrow{\text{Rubisco}}$	r In the given								
Identify x in the given									
a) 2×2 PGA	b) 2 × 3 PGA	c) 2 × 4 PGA	d) 2 × 1 PGA						
	orylation needs PS-I and PS-	,							
	horylation produced NADPH								
	bhorylation involves H_2O								
	cled in cyclic photophosphor	rvlation							
•	nd incorrect statement and s	•	V						
a) I, II and III are inco		b) I, II and IV are incor	-						
c) I, II and III are inco			d) IV, III and Ii are incorrect, I in correct						
402. Which statement abo		<i>,</i>	, ,						
	ers involved in photophosph	orylation are located on th	e thylakoid membranes						
	a redox process, in which wa		-						
	ired for carbon fixation are lo								
	th PS-I and PS-II are require		-						
, o i	erent from the C ₃ -plants wit								
	involved in photosynthesis		PH that are consumed in						
		preparing sugar							
c) Types of end produ	uct of photosynthesis	d) The substance that a	accepts carbon dioxide in						
		carbon assimilation	and first stable product						
404. Identify the incorrect	statement with respect to Ca	alvin cycle.	-						
	- f D. DD :	b) The first stable inter	rmediate compound formed is						
a) The carboxylation	of RuBP is catalysed by Rubi	sco phosphoglycerate							
c) 18 molecules of AT	P molecules of ATP are	ی NADPH + H ⁺ produ	ced in light reaction is used to						
synthesized during	g carbon fixation	d) reduce diphosphogl	ycerate						
405. NADP reductase enzy	me is present on the								
a) Lumen side of mer	nbrane	b) Lamellae side of me	mbrane						
c) Stroma side of men	nbrane	d) Cell membrane of cl	nloroplast membrane						
406. Cyclic photophospho	rylation links to								
a) PS-II	b) PS-I	c) Dark reaction	d) Both (a) and (b)						
407. In photorespiration, v	what is the role of peroxisom	ie?							
a) Helps in oxidation	of glyocolate	b) Helps in oxygenatio	n of glycolate						
c) Helps in synthesis	of PGA	d) Helps in reduction o	of glyoxylate						
408. Calvin cycle can be de	escribed under three stages."	These stages are							
I. carboxylation									
II. ligation									
III. reduction									
IV. regeneration									
Select the correct opt	ion								
a) II, III and IV	b) I, III and IV	c) I, II and IV	d) I, II and III						
409. In which of the follow	ving wavelengths, photosyste	em-I is inactive?							
a) 780 nm	b) 680 nm	c) 690 nm	d) 550 nm						
410. Bacterial photosynthe									
a) Both PS-I and PS-I		c) PS-I only	d) PS-II only						
411. The first carbon dioxi									
a) RuBP	b) PEP	c) PGA d) OAA							
412. In photo system-I, the	e first electron acceptor is								
a) Ferredoxin		b) Cytochrome							
			Page 31						

a) Plastograpin	d) An iron culphur prot	oin				
 c) Plastocyanin 413. Fixation of six molecules of CO₂ needs 	d) An iron-sulphur prot	em				
_	a a) 2 turne of Colvin avel	a d) 2 turns of Calvin avala				
	e c) 3 turns of Calvin cycle d) 2 turns of Calvin cycle					
414. Energy isA to pump protons across a membran		•				
within the thylakoidB ATPase has a channel th	=					
membrane. This releases enough energy to activate						
Complete the given NCERT statement by filling app						
a) A-released, B-lumen, C-ligase	b) A-used, B-lumen, C-li	-				
c) A-used, B-lumen, C-ATPase	d) A-released, B-lumen,	C-ATPase				
415. Photosynthesis and respiration are similar because						
I. in eukaryotes, both processes occur in specialised	-					
II. ATP synthesis in both is explained by chemiosm	otic theory					
III. both use ETC						
Select the correct option	N N N N					
a) I and II b) II and III	c) I and III	d) I, II and III				
416. Which one does not occur in cyclic photophosphor						
a) Oxygen is not given off	b) Water is not consume	ed				
c) Only photosystem-I is involved	d) NADPH ₂ formation					
417. Quantum yield of photosynthesis is						
a) 33 % b) 9 %	c) 12 %	d) 8 %				
418. A plant with low carbon dioxide compensation point						
a) <i>Atriplex patula</i>	b) <i>Leucopoa kingii</i>					
c) <i>Gossypium hirsutum</i>	d) <i>Tidestromia oblongifolia</i>					
419. Select the wrongly matched pair with regard to C_4	cycle.					
a) Primary CO ₂ fixation-PGA product						
b) Site of initial-Mesophyll cells carboxylation						
c) Primary CO ₂ acceptor-PEP						
d) C ₄ plant-Maize						
420. ATP synthesised by cells in						
I. chloroplast II. Mitochondria						
III. Golgi body						
Select the correct option						
a) I and III b) I and II	c) II and III	d) I, II and III				
421. In which cells of leaf, pyruvate is converted to PEP	in C ₄ pathway?					
a) Epidermal cells	b) Mesophyll cells					
c) Bundle sheath cells	d) Guard cells					
422. Identify A, B, C, D and E from the given figure and c	hoose the correct option a	ccordingly				
H ⁺ NADP ⁺						
A C B NADPH						
H ⁺ H ⁺ H ⁺ p						
Thylakold F0						
E ATP synthase						
a) A-PS-I, B-PS-II, C-cytochrome- <i>b</i> and <i>c</i> , D-Lumen						
b) A-PS-I, B-PS-II, C-cytochrome- <i>b</i> and <i>c</i> , D- Stroma						
c) A-PS-II, B-PS-I, C-cytochrome- <i>b</i> and <i>c</i> , D-Stroma						
d) A-PS-II, B-PS-I, C-cytochrome- <i>b</i> and <i>c</i> , D- Lumen	, E-Stroma					
423. 3-PGA is first stable product in						
a) Carbon-reduction cycle	b) Photorespiration					
		• • •				
		Page 32				

c) Light reaction

d) All of these

NEET BIOLOGY

PHOTOSYNTHESIS IN HIGHER PLANTS

	· ANCIA/ED KEV ·														
: ANSWER KEY :															
1)	d	2)	d	3)	d	4)	с	165)	а	166)	d	167)	b	168)	d
-) 5)	d	6)	d	7)	с	8)	a	169)	b	170)	a	171)	d	172)	a
9)	b	10)	d	11)	а	12)	С	173)	b	174)	b	175)	а	176)	а
13)	а	14)	b	15)	b	16)	b	177)	b	178)	b	179)	b	180)	а
17)	С	18)	а	19)	d	20)	а	181)	d	182)	d	183)	С	184)	а
21)	С	22)	d	23)	а	24)	d	185)	а	186)	а	187)	b	188)	а
25)	а	26)	b	27)	b	28)	b	189)	d	190)	b	191)	d	192)	С
29)	b	30)	d	31)	а	32)	а	193)	С	194)	b	195)	b	196)	b
33)	b	34)	a	35)	d	36)	b	197)	b	198)	а	199)	С	200)	b
37)	d	38)	С	39)	d	40)	d	201)	С	202)	С	203)	b	204)	a
41)	С	42)	С	43)	а	44)	b	205)	d	206)	d	207)	а	208)	d
45)	а	46)	С	47)	а	48)	b	209)	d	210)	С	211)	b	212)	С
49)	а	50)	b	51)	а	52)	а	213)	b	214)	b	215)	b	216)	b
53)	b	54)	С	55)	С	56)	С	217)	d	218)	а	219)	d	220)	а
57)	С	58)	С	59)	b	60)	С	221)	b	222)	С	223)	b	224)	b
61)	а	62)	d	63)	С	64)	d	225)	а	226)	b	227)	С	228)	С
65)	d	66)	d	67)	b	68)	а	229)	b	230)	d	231)	b	232)	а
69)	С	70)	d	71)	а	72)	С	233)	d	234)	b	235)	b	236)	d
73)	b	74)	а	75)	а	76)	d	237)	а	238)	b	239)	а	240)	С
77)	а	78)	С	79)	а	80)	b	241)	а	242)	С	243)	b	244)	b
81)	b	82)	d	83)	С	84)	d	245)	а	246)	b	247)	а	248)	b
85)	С	86)	а	87)	С	88)	а	249)	а	250)	b	251)	b	252)	a
89)	d	90)	С	91)	b	92)	b	253)	а	254)	а	255)	d	256)	d
93)	С	94)	d	95)	а	96)	b	257)	b	258)	b	259)	b	260)	d
97)	b	98)	b	99)	b	100)	С	261)	а	262)	d	263)	d	264)	d
101)	b	102)	а	103)	b	104)	d	,	С	266)	d	267)	d	268)	а
105)	С	106)	d	107)	а	108)	d	,	d	270)	b	271)	а	272)	d
109)	d	110)	d	111)	С	112)		273)	d	274)	а	275)	а	276)	а
113)	d	114)	а	115)	а	116)		277)	b	278)	С	279)	d	280)	а
117)	С	118)	а	119)	b	120)		281)	С	282)	b	283)	b	284)	b
121)	d	122)	C	123)	d	124)		285)	а	286)	d	287)	a	-	b
125)	d	126)	b	127)	b	128)		289)	а	290)	а	291)	b	292)	d
129)	d	130)	b	131)	a	132)		293)	а	294)	С	295)	b	296)	d
133)	d	134)	C	135)	d	136)		297)	а	298)	а	299)	a	300)	d
137)	С	138)	d	139)	а	140)		301)	a	302)	C	303)	b	304)	С
141)	a	142)	b	143)	C	144)		305)	b	306)	b	307)	C	308)	a
145)	d	146)	a	147)	d	148)		309)	d	310)	a	311)	d	-	b
149)	b	150)	d	151)	b	152)		313)	а	314)	b	315)	b	316)	С
153)	b	154)	С	155)	b	156)		317)	С	318)	a	319)	а	320)	C
157)	d	158)	C	159)	b	160)		321)	a L	322)	b	323)	а	324)	d
161)	С	162)	d	163)	d	164)	а	325)	b	326)	С	327)	С	328)	С
														Page	34

329)	b	330)	b	331)	d	332) I	b 381)	а	382)	b	383)	С	384)	b
333)	С	334)	b	335)	b	336)	c 385)	С	386)	d	387)	b	388)	С
337)	а	338)	d	339)	b	340)	c 389)	b	390)	С	391)	b	392)	d
341)	d	342)	d	343)	b	344)	d 393)	С	394)	d	395)	d	396)	a
345)	а	346)	а	347)	а	348)	d 397)	а	398)	b	399)	С	400)	b
349)	d	350)	С	351)	d	352)	c 401)	а	402)	С	403)	d	404)	С
353)	С	354)	d	355)	а	356) I	b 405)	С	406)	b	407)	а	408)	b
357)	С	358)	d	359)	а	360)	d 409)	а	410)	С	411)	b	412)	d
361)	b	362)	d	363)	а	364) a	a 413)	b	414)	С	415)	b	416)	d
365)	b	366)	С	367)	b	368)	d 417)	С	418)	d	419)	а	420)	b
369)	a	370)	а	371)	b	372)	d 421)	b	422)	d	423)	а		
373)	С	374)	С	375)	b	376) I	b							
377)	а	378)	а	379)	а	380)	d							

NEET BIOLOGY

PHOTOSYNTHESIS IN HIGHER PLANTS

: HINTS AND SOLUTIONS :

1 **(d)**

12 extra ATP molecules are needed for production of one molecule of one molecule of hexose sugar in C_4 -plant.

2 **(d)**

Movement of protons across the membrane to stroma.

Proton gradient is important because it is the break down of this gradient that leads to release of energy. The gradient is broken down due to movement of protons across the membrane to the stroma through the transmembrane channel of the F_0 of the ATPase.

The energy released during the breaking down of proton gradient is used in formation of ATP

3 **(d)**

Chemical equation for photosynthesis can be shown as

$$CO_2 + 2H_2O \xrightarrow{\text{Light energy (hv)}}{\text{Chlorophyll}} (CH_2O)_n + H_2O + O_2 \uparrow 9$$

or $6CO_2 + 12H_2O \xrightarrow{(hv)}_{Chlorophyll} C_6H_{12}O_6 + 6H_2O + 6O_2 \uparrow$

Glucose

4 **(c)**

Thylakoid membrane

5 **(d)**

RuBP carboxylase/ oxygenase (RUBISCO) is an enzyme present in the stroma of chloroplast. This enzyme is responsible for primary carboxylation in C_3 -plants as a 5C sugar RuBP acts as carbon dioxide acceptor in the presence of this enzyme and produces 6C unstable compound which then splits into two molecules of 3-phosphoglyceric acid (3C compound), the first stable product of C_3 -cycle.

6 **(d)**

Law of limiting factor was proposed by **F F Blackman** (1905). It stated that 'when a process is conditioned as to its rapidity by a number of separate factors, the rate of the process is limited by the pace of the slowest factor' (*i.e.*, factor present minimum amount).

(c)

7

Assimilation and reduction of carbon dioxide takes place during Calvin cycle. This cycle takes in only one carbon (as CO_2) at a time so it takes six turns to produce a hexose or glucose molecule (6 carbon). In Calvin cycle, for formation of one mole of hexose sugar (glucose) 18 ATP and 12 NADPH₂ are used. The assimilatory power (NADPH₂ and ATP) are generated in light reaction of photosynrthesis.

(a)

8

In stroma, enzymatic reactions incorporate CO_2 into the plant leading to the synthesis of sugar, which in turn forms the starch

(b)

The process of photosynthesis in C_4 -plants and CAM (crassulacean Acid Metabolism) is same. But instead of spatial separation of initial PEP case fixation and final RUBISCO fixation of carbon dioxide, the two steps occurs in the same cells but at different times, night and day, *e.g., Opuntia,* pineapple, *Vanilla.* **PEP** (Phosphoenol Pyruvic Acid) is the first acceptor of carbon dioxide in CAM-plants like C_4 -plants.

10 **(d)**

PEP carboxylase or pepco is the special enzyme, which is found in the mesophyll cells of C₄-plant. Pepco is capable of fixing CO_2 more efficiently in C₄-plant than Rubisco, even in low CO_2 concentration

11 **(a)**

Law of limiting factor was proposed by **Blackman** in 1905. He started that when a process is conditional as to its rapidly by a number of separate factors, then the rate of the process is determined by the pace of slowest factor. Carbon dioxide is usually a limiting factor in photosynthesis under field conditions particularly on clear summer days under adequate water supply.

12 **(c)**

PS or Photosystem is made of a reaction centre and an antenna an molecule

13 **(a)**

Chloroplasts are the green plastids which take part in photosynthesis and temporary or permanent storage of starch. These are discoid (disc-shaped) in higher plants with diameter of 4- $6 \ \mu m$ and thickness of 2-4 μm .

14 **(b)**

RuBP firals one CO_2 molecule in C_3 plants with the help of enzyme Rubisco.

15 **(b)**

Cyclic photophosphorylation involves only photo system-I and a few electron carriers. During cyclic photophosphorylation, ATP is formed but NADPH does not formed.

16 **(b)**

Photosynthesis involves the conversion of light energy to chemical energy by photosynthetic pigments using water and carbon dioxide and producing carbohydrate.

17 **(c)**

Plastoquinone transfer electron from photo system-II to photo system-I. Electrons released from P_{700} or photo system-I moves through Fe-S, plastoquinone, cytochrome and plastocyanin and are recycled to P_{700} . In this process, only ATP is produced but no oxygen produced.

19 **(d)**

The fact that C_3 -plants respond to higher CO_2 concentration by showing increased rates of photosynthesis leading to higher productivity has been used for some greenhouse crops such as tomatoes and bell pepper.

They are allowed to grow in carbon dioxide enriched atmosphere that leads to higher yields

20 **(a)**

Copper is component or activator of ptastocyanin, cytochrome oxidase, RuBP carboxylase and many other enzymes. It has major role in electron transfer, maintenance of carbohydrate, nitrogen balance and chlorophyll synthesis.

21 **(c)**

22

(d)

The two pigment system theory of photosynthesiswas proposed by Emersonet. al.29

In photosystem-I, the photocentre is a special chlorophyll-a molecule called P_{700} , which is active in both red and far-red light, while a very small amount of special from of chlorophyll-a called P_{680} , constitutes the reaction centre of photo system-II. PS-II is inactive in far-red light (beyond 680 nm).

23 **(a)**

Chlorophyll-a

24 **(d)**

The rate of photosynthesis is very important in determining the yield of plants including crop plants. Photosynthesis is under the influence of several factors, both internal (plant) and external. The plant factors includes the number, size, age and orientation of leaves, mesophyll cells and chloroplast, internal CO_2 concentration and the amount of chlorophyll. The plant or internal factors are dependent on the genetic predisposition and the growth of the plant

25 **(a)**

In the experiment for starch synthesis in green leaves, two leaves, a variegated leaf or a leaf that was partially covered with black paper and other one that was exposed to light were taken. On testing these leaves for starch, it was clear, that photosynthesis had occurred only in the green parts of the leaves in the presence of light

26 **(b)**

The process of photorespiration was firstly discovered in tobacco plant. It is the light dependent day time process of oxygenation of RuBP. It takes place in the chloroplast and characteristic of C_3 -plants

27 **(b)**

Photosynthesis is manufacture of organic compounds inside the chlorophyll containing cells from CO_2 and water with the help of sunlight. Photosynthetic unit occur in the form of two distinct groups called pigment systems. The first reaction in photosynthesis is excitation of chlorophyll molecule.

28 **(b)**

 C_4 -plants show Kranz anatomy. In Kranz anatomy, bundle sheath cells are arranged radially around the vascular bundles, which look like a ring or wreath. The chloroplasts in C_4 -leaves are dimorphic.

(b)

Conversion of carbon dioxide to simple (reduced) organic compounds is called carbon dioxide fixation or carbon dioxide assimilation or carbon fixation. This fixation pathway was elucidated by **Melvin Calvin** and is often called as Calvin cycle.

30 **(d)**

Hill reaction was discovered by **Robert Hill** in 1939. It involves the release of oxygen from isolated illuminated chloroplasts when suitable electrons acceptors (*e.g.*, **potassium ferricyanide**) are added to the surrounding water.

31 **(a)**

In mesophyll cells the PEP carboxylase is present and RuBisCo is absent.

In bundle sheath cells the RuBisCo is present and PEP carboxylase is absent

32 **(a)**

Due to the punctured thylakoid membrane, the interior of thylakoid is no longer separated from stroma that leads to the disturbed proton gradient.

The proton concentration between the thylakoid membrane and stroma becomes the same. Hence, no ATP formation takes place as ATP formation takes place due to the proton gradient

33 **(b)**

Because only respiration is taking place at this intensity of light.

34 **(a)**

During the cyclic phosphorylation, the electrons does not pass to the NADP⁺ but cycled back to PS-I through electron transport chain. This cyclic flow hence, results only in the synthesis of ATP but no of NADPH + H⁺. Cyclic photophosphorylation occurs when only light of wavelength beyond 700 nm is available for

excitation

35 **(d)**

Calvin cycle occurs in the stroma not grana. During the Calvin cycle, synthesis of starch takes place

Photosynthetic reaction in purple sulphur bacteria

 $2H_2S + CO_2 \xrightarrow{\text{Light}} 2S + CH_2O + H_2O$

Absence of light leads to the stoppage of splitting of water which causes stoppage of photosynthesis

36 **(b)**

Carbon dioxide is usually a limiting factor in photosynthesis under normal conditions

particularly, clear summer days under adequate water supply

37 **(d)**

Cytochromes are iron containing pigments. These act as electron transporter or electron acceptor in respiration and photosynthesis both.

38 **(c)**

The light harvesting complex is made up of hundreds of pigment molecules bounded to proteins

39 **(d)**

Molecular formula of chlorophyll-*a* and *b* are as follow:

 $C_{55}H_{72}O_5N_4Mg$ -Chlorophyll-*a* $C_{55}H_{70}O_6N_4Mg$ -Chlorophyll-*b*

40 **(d)**

In the leaves of C₄-plants, the vascular bundles are surrounded by bundle sheath of larger parenchymatous cells, which in turn are surrounded by mesophyll cells. Bundle sheath cells have a high density of larger chloroplasts which always lack grana, whereas chloroplasts of mesophyll cells are smaller.

41 **(c)**

Steps in chemosynthetic ATP synthesis are
(i) Light excites electron in PS-II
(ii) Electrons from PS-II pass along electron to move H⁺ across the membranes
(iii) Carriers use energy from electrons to move H⁺ across the membrane
(iv) H⁺ concentration gradients is established

(v) H⁺ diffuses through ATP synthesis

(vi) Energy of $\rm H^+$ flow is used by ATP synthesis to make ATP

42 **(c)**

Visible light consists of radiation having a wavelength between 390-760 nm (or 3900-7600 A). It can be resolved into light of different colours. Namely, violet (390-430 nm), blue (430-470 nm) blue-green (470-500 nm), green (500-580 nm), yellow (580-600 nm), orange (600-650 nm), red (650-660 nm), red (660-760 nm) Red light above 760 nm is called infrared and the light radiation shorter than the violet is called ultraviolet light

43 **(a)**

The site for photorespiration is chloroplast. Peroxisome and mitochondria are required for completing the process. This happen at high temperature and high oxygen concentration.

44 **(b)**

Genetic predisposition.

The rate of photosynthesis is very important in
determining the yield of plants including crop
plants. Photosynthesis is under the influence of
several factors, both internal (plant) and external.52The plant factors includes the number, size, age
and orientation of leaves, mesophyll cells and
chloroplast, internal CO2 concentration and the
amount of chlorophyll. The plant or internal
factors are dependent on the genetic
predisposition and the growth of the plant52

45 **(a)**

Each water molecule on photolysis yields one $\rm H^+$ and $\rm OH^-$ ion

 $H_20 \rightarrow 2H^+ + [0] + 2e^-$

So, by $12H_2O$ molecule in photolysis 24 H⁺ will product

46 **(c)**

In non-cyclic photophosphorylation, evolutions of oxygen take place. It becomes possible due to photolysis of water molecules into H⁺ and OH⁻ ions. Later on OH⁻ ion reassociate and form water and oxygen, while H⁺ ions go to NADP⁺ (a hydrogen acceptor).

Each water molecule on photolysis yields one $\rm H^+$ and $\rm OH^-$ ion

 $H_20 \rightleftharpoons H0^-H^+$

 $20H + 20H \rightleftharpoons 2H_20 + 0_2 \uparrow$ So, 12 H₂0 \rightleftharpoons 120H⁻ + 12H⁺

47 **(a)**

Red light

48 **(b)**

The Calvin cycle is common between the C_3 and C_4 -cycle. In C_4 , it takes place in bundle sheath and in C_4 , it takes place in mesophyll cells

49 **(a)**

Chlorophyll is the principle pigment involved in photosynthesis. Chlorophyll-*a* is the major pigment involved in trapping light energy and converting it into electrical and chemical energy. Chlorophyll-*b* molecules also act as accessory pigment. Other accessory pigments are phycoerythrin, phycocyanin, carotenoids, etc. the accessory pigment and reaction centre together from photo system.

50 **(b)**

In photosynthesis, carbon dioxide is reduced and water is oxidised.

 C_4 -plants have Kranz anatomy, which includes bundle sheath cells and mesophyll cells. In case of C_4 plants, the primary CO_2 acceptor is a 3-carbon molecule. *i.e.*, phosphoenol pyruvate and is present in the mesophyll cells

2 **(a)**

Chloroplast, which is a cytoplasmic cell organelle, is found only in eukaryotic plant cells. These structures help in the manufacture of food through photosynthesis. Chlorophyll is a specialized light absorbing pigment, which is found in the inner wall of granum. Each granum is a flat, sac-like structure, in which light reaction of photosynthesis takes place.

53 **(b)**

ATP is synthesised by cells (in mitochondria and chloroplast) and the process is named as phosphorylation. Photophosphorylation is the synthesis of ATP from ADP and inorganic phosphate in the presence of light. When the two photosystems work in a series, first PS-II and then the PS-I, a process called non-cyclic photophosphorylation occurs. The two photosystem are connected through an electron transport chain, as seen earlier- in the Z scheme. Both ATP and NADPH + H⁺ are synthesised by this kind of electron flow. When only PS-I is functional, the electron is circulated within the photosystem and the phosphorylation occurs due to the cyclic flow of electrons

54 **(c)**

As per Peter Mitchell's Chemiosmotic coupling hypothesis, outward pumping of protons across the inner chloroplast or mitochondrial membrane results in accumulation of protons between outer membrane and inner membrane. A proton gradient is thus established. As protons now flow back passively down the gradient, the proton motive force is utilised to synthesis ATP.

55 **(c)**

Action Spectrum is the curve depicting the relative rate of photosynthesis at different wave-length of light. It shows that the maximum photosynthesis occur at the blue red region. These regions are the absorption region of chlorophyll-*a*. So, the action spectrum of photosynthesis is almost identical to the absorption spectrum of chlorophyll-*a*

56 **(c)**

Loss of all leaves would do maximum harm to a tree. Due to this, the rate of photosynthesis will

51 **(a)**

decreased, which results in the decrease of metabolic activities.

57 **(c)**

Regeneration of PEP takes place in mesophyll cells by the action of phosphopyruvate kinase Pyruvate + ATP $\xrightarrow{Phosphopyruvate}$ PEP + AMP +

Pyruvate + ATP — H_3PO_4

58 (c)

Loss of energy occurs during **photorespiration**. Photorespiration is light induced oxidation of photosynthetic intermediates with the help of oxygen and release of carbon dioxide. Energy is not released during photorespiration.

59 **(b)**

Two molecules of glycine condense to from a molecule of serine and carbon dioxide and ammonia are released.

60 **(c)**

C₄Plants have Rubisco-enzyme. In C₃plants Carboxylation of RuBP leads to formation of PGA.

61 **(a)**

Photorespiration is the light dependent process of oxygenation of ribulosebiphosphate (RuBP) and release of carbon dioxide by the photosynthetic organs of a plant. More oxygen and less carbon dioxide is helpful in photorespiration.

62 **(d)**

 $\rm H_2O, \rm CO_2,$ light, chlorophyll are the raw material for photosynthesis

 $6CO_2 + 12H_2O \xrightarrow{\text{Light}} C_6H_{12}O_6 + 6O_2 + 6H_2O$

63 **(c)**

In C₄-plants, characteristics Kranz anatomy is found. Vascular bundles are surrounded by two rings of cells-

- 1. Bundle sheath cell contains starch rich chloroplast, lacking grana.
- 2. Mesophyll cell, which does not distinguished into palisade and spongy parenchyma.

64 **(d)**

Starch.

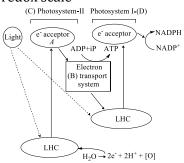
Julius von Sachs provided evidence for the production of glucose when plants grow. Glucose is usually stored as starch. His later studies showed that the green substance in plants (chlorophyll as we know it now) is located in special bodies (later called chloroplast) within plant cells.

He found that the green parts in plants are where glucose is made, and that the glucose is usually stored as starch

65 **(d)**

Photosynthesis is a process, in which green plants manufacture their own food with help of carbon dioxide and water in presence of sunlight and takes place in chloroplast. In the question, no photosynthesis takes place because the chloroplast is not intact.

66 **(d)**


The value of carbon dioxide compensation point is 25-100 ppm in C_3 -plants and less than 5 ppm in C_4 -plants. Thus, compensation point of C_3 -plants is higher than C_4 -plants.

67 **(b)**

During downhill movement, the electrons releases energy, which converted ADP into ATP.

68 **(a)**

Transport of electrons in photosynthesis takes place from the PS-II to PS-I through electrons transport system. In the electron transport system, there are various cytochrome, which carries electrons to the down hill potential of redox scale

69 **(c)**

PEP carboxylase.

In C_4 -plants the initial fixation of carbon dioxide occurs in mesophyll cell. The primary acceptor of CO_2 is phosphoenol pyruvate or PEP. It combines with carbon dioxide in presence of PEP carboxylase or PEPcase to form oxaloacetic acid or oxaloacetate

 $\begin{array}{l} \text{PEP} + \text{CO}_2 + \text{H}_2\text{O} \xrightarrow{\text{PEP carboxylase}} \text{Oxaloacetic acid} \\ + \text{H}_3\text{PO}_4 \end{array}$

70 **(d)**

Stroma lamellae lacks both PS-II and NADP reductase due to the occurrence of cyclic photophosphorylation

71 **(a)**

Rubisco stands for ribulosebisophosphate carboxylase oxygenase. Ribulose 1, 5-biphosphate (RuBP)is carbon dioxide acceptor in C₃-plants.

72 **(c)**

The thylakoids of chloroplast are flattened vesicles arranged as a membranous network within the stroma. 50% chloroplast proteins and various components involved (namely chlorophyll, carotenoids and plastoquinone) are present in thylakoids membranes that are involved in photosynthesis.

73 **(b)**

DUMC (Dichlorophenyl Dimethyl Urea) is a herbicide, which inhibits oxygen evolution and non-cyclic Photophosphorylation. Oxygen evolution and non-cyclic Photophosphorylation, both are involve in PS-II.

74 **(a)**

In CAM-plants, malic acid is formed during night without Kranz anatomy.

75 **(a)**

Energy formed on the stroma side thylakoids membrane during light reaction, *i.e.*, NADPH $+H^+$ of ATP, is used by the Calvin cycle or dark reaction to form the starch or carbohydrates

76 **(d)**

Plants that are adapted to dry tropical regions generally have the C₄ pathway. Though these plants have the C₄-oxaloacetic acid as the first CO_2 fixation product they use the C₃ pathway or the Calvin cycle as the main biosynthetic pathway

77 **(a)**

Maximum photosynthesis rate has been observed84in the full spectrum. Regarding the effect ofdifferent wavelengths, maximum photosynthesisoccurs in red light (660 nm), second maximum inblue (440 nm) and minimum in green

78 **(c)**

During the light reaction, the splitting of water gives two proton, one oxygen and two electrons. Protons are used in the formation of protein gradient across the thylakoid membrane. Oxygen is liberated as byproduct. Electrons goes to the PS-II and to the electron transport chain

79 **(a)**

Adenosine diphosphate (ADP) contains one high
energy bond. The second phosphate bond of ADP
can release 7300 calorie of free energy per mol on
hydrolysis. Adenosine triphosphate (ATP) has
two high energy bonds.87

80 **(b)**

At places, the thylakoids are aggregated to form stacks of discs called grana. A granum may have 20-50 thylakoid discs. The thylakoids lying outside the grana are called stroma thylakoids on intergranal thylakoids (lamellae)

81 **(b)**

The chemiosmotic hypothesis explains the ATP synthesis mechanism. Like in respiration, in photosynthesis too, ATP synthesis is linked to the development of proton gradient across the membrane. This time these are the membranes of the thylakoid. There is one difference that in photosynthesis the proton accumulation is towards the inside of membrane, *i.e.*, in the lumen. In respiration, proton accumulate in the intermembrane of the mitochondria when electrons move through the ETS (Electron Transport System)

82 **(d)**

Glucose molecule contains-6 carbon. For fixing one carbon (CO_2). Calvin cycle needs 3 ATP and 2 NADPH. Then for fixing six carbon ($C_6H_{12}O_6$), Calvin cycle needs 18 ATP and 12 NADPH. The net reaction of C_3 dark fixation of CO_2 is 6 RuBP + 6 CO_2 + 18 ATP + 12 NADPH

83 **(c)**

Five types of chlorophyll are present in plants namely *a*, *b*, *c*, *d*, *e* out of these, only two chlorophyll, *i.e.* ; *a* and *b* occurs in all chloroplast of higher plants. Thus, they are called the main plant photosynthesis pigments

4 **(d)**

C¹⁴Is an isotope of carbon. It has been used to draw the path of carbon fixation in the process of photosynthesis.

This lebelledC¹⁴ becomes incorporated with ¹⁴CO₂, which is accepted by RuBP and 3 carbon compounds, phosphoglyceric acid (3-PGA) is formed. 3-PGA is the first stable compound.

85 **(c)**

Anthocyanin is a water sholuble pigment. It constitute a class of natural phenolic product. These provide colour to petals and fruits.

86 **(a)**

Robert Emerson discovered Pigment System-I (PS-I) and Pigment System-II (PS-II).

(c)

Photorespiration is also called the glycolate or oxidative photosynthetic carbon cycle

88	(a)		So, the isotopic oxygen (0^{18}) molecule in CO_2 will
	M D Hatch and C R Slack found that in certain		be incorporated into the PGA, RuBP, glucose.
	plants growing in tropical climates, the first		Isotopic O ¹⁸ is not found in oxygen liberation
	product of photosynthesis is a C ₄ -compound	95	(a)
	<i>instead of a C</i> ₃ <i>-compound. These plants are now</i>		P _{fr} From, induces the seed germination.
	known as C ₄ – plants or Hatch and Slack type	96	(b)
	<i>plants. The</i> C_4 -plants show Kranz type anatomy,		Photosynthesis starts at quite low intensity of
	<i>e.g.</i> , sugarcane, Corn, <i>Euphorbia</i> , etc.		light but very high intensity cause solarisation,
89	(d)		<i>i.e.</i> , disintegration of chlorophyll molecules.
	Both PS-I and PS-II are involved in non-cyclic		Solarisation may reduce the photosynthetic
	photophosphorylation.		activity.
90	(c)	97	(b)
	Photosynthesis converts radiant energy or the		C_4 pathway is seen in angiosperms (dicot and
	solar energy into chemical energy. Some energy		monocots). It is absent in the lower forms of
	gets stored in the organic food between different		plants, like Pteridophyta or Bryophyta or algae
	atoms. Photosynthetic products provide energy to	98	(b)
	all organisms to carry out their life activities		RuBP carboxylase oxygenase
91	(b)	99	(b)
	The phenomenon of breaking up of water into		During photorespiration in Peroxisome, two
	hydrogen and oxygen in the illuminated		molecules of glycine $(2H_2NCH_2 - CO_2)$ are
	chloroplasts is called photolysis. Light energy, an		transferred into mitochondrion, where they are
	oxygen evolving complex and an electron carrier		converted into one molecule of serine $(HOCH_2 -$
	Y_z are required. Electron carrier Y_z transfer the		$H_2NCH - CO_2$). Thus, the ratio between 2C and 3C
	released electrons to P_{680} . The oxidised P_{680} regains		intermediates having – NH_2 group is 2:1.
	its electrons by the photolysis of water into $2H^+$,	100	
	2e ⁻ and oxygen. Oxygen is given out.		Idioblast seems to the most appropriate choice.
	$H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$		Invertaseand pepsin are enzyme proteins
	Z Water Proton		(contain nitrogen) and bacteriochlorophyll also
	Electron		contains nitrogen. Idioblasts are cells having
92	(b)	101	crystals of calcium oxalate, called raphides.
-	Dark phase of photosynthesis of Calvin cycle takes	101	
	place in the stroma of chloroplast. First step of		Only on factor, which is close to the minimal value.
	dark phase is Carboxylation. In Carboxylation,		Law of limiting factor was proposed by F. F.
	carbon dioxide is combined with RuBP to from		Blackman. (1905). It stated that when a process is
	first stable compound.		conditioned as to its rapidly by number of
	6RuBP+6CO ₂		separate factors, the rate of the process is limited
	$\xrightarrow{\text{RuBP carboxylase}} 12 \text{ phosphoglyceric acid}$		by the pace of the slowest factor (<i>i.e.</i> , the factor
02			present in minimum amount)
93	(c)	102	-
	In CAM-plants, carbon dioxide enters into the leaf and fixed to oxaloacetic acid, which is then	102	The external factors would include the availability
	converted to malic acid at night when stomata are		of sunlight, temperature, CO_2 concentration and
	open. This malic acid is stored in cells during		water. As a plant photosynthesises, all these
	night. So, in CAM-plants, organic acids accumulate		factors will simultaneously affect its rate.
	(or their concentration increases) in the dark (<i>i.e.</i> ,		Hence, through several factors interact and
	at night) in vacuoles.		simultaneously affect photosynthesis or CO ₂
94	(d)		fixation, usually one factor is the major cause or is
~ I	Oxygen evolved by the splitting of H_2O		the one that limits the rate. Hence, at any point
	$2H_2O \rightarrow 4H^+ + 4e^- + O_2$		the rate will be determined by the factor available
	2 2		at sub-optimal levels

103 **(b)**

Reduce NADP+.

Light reaction begins with the PS-II. In photosystem-II the reaction centre chlorophyll-*a* absorb 680 nm. wavelength of red light causing electrons to become excited and jump into orbit further from the nucleus. These electrons are picked up by an electron acceptor, which passes them to an electron system consisting of cytochromes.

The movement of electrons in ETS of photosynthesis is down hill in terms of oxidation reduction or redox potential scale. The electrons are not used up as they pass through the electron transport chain, but they passed on the pigments of photosystem I. Simultaneously, electrons in the reaction centre of PS-I are also excited, when they receive red light of wavelength 700 nm and are transferred to another acceptor molecule that has greater redox potential. These electrons than are moved down hill again this time to a molecule of energy rich NADP⁺. The addition of these electrons reduces the NADP⁺ to NADPH + H⁺

104 (d)

The detailed study of C_4 -cycle was introduced by **M D Hatch** and **C R Slack** (1966).

105 **(c)**

In stroma, the fixing of CO₂ takes place by expanding NADPH₂ and ATP formed by light reaction. So, scientist should have supplied NADPH₂ and ATP to intact stroma for CO₂ fixation

106 **(d)**

CAM plants are mostly succulent xerophytes. The stomata in these plants remain closed during the day. They help to check the transpiration. In this way, water is conserved.

107 (a)

PEP (Phosphoenol pyruvate) present in mesophyll cell

108 **(d)**

Absorption spectrum of chlorophyll explain the green colour of chlorophyll. It is approximate to action spectrum of photosynthesis and the rate is different at different colour.

109 **(d)**

The use of radioactive ¹⁴C by Melvin Calvin in algal (*Chlorella*) photosynthesis studies led to the discovery that the first carbon dioxide fixation product was a 3-carbon organic acid. The first product identified was 3-phosphoglyceric acid (PGA).

110 **(d)**

The first step or Calvin Cycle or C_3 -pathway is Carboxylation in which a 5 C sugar RuBP acts as carbon dioxide acceptor in the presence of enzyme RUBISCO and produces 6C unstable compound. This unstable 6C compound splits into molecules of 3-phosphoglyceric acid (3Ccompound), which is the first stable product of this pathway.

111 **(c)**

$H_{2}O.$

Electron excited by PS-I used in the formation of NADPH + H^+ . These electrons come ultimately from H_2O through photosynthesis

112 **(d)**

A chromatographic separation of the leaf pigment shows that the colour that we see in leaves is not due to the single pigment but due to four pigments. They are Chlorophyll-*a* (bright or blue green in chromatogram),

Chlorophyll-*b* (yellow green),

Xanthophyll (yellow)

Carotenoids (yellow to yellow orange)

113 **(d)**

Quantasomes are present on inner membrance of thylakoids. Each quantasomehave 230 molecules of chlorophyll.

114 **(a)**

In C_4 -plants, leaf shows Kranz anatomy. In these plants, the carbon dioxide first accepted in the mesophyll cells by **PEP** (phosphoenol pyruvate) and form a four carbon compound oxaloacetic acid.

115 **(a)**

Carboxylation of one molecule of RuBP leads to the formation of 2 molecules of PGA

$$RuBP + CO_2 \xrightarrow[carboxylase]{RuBP} 2 - carboxyl 3-keto 1-5,$$

bisphosphoribotol.

2-carboxyl 3-Keto 1-5-bisphosphoribotol $+H_2O \rightarrow 2PGA$

116 **(c)**

CAM-pathway (Crassulacean Acid Metabolism) is a mechanism of photosynthesis involving double fixation of carbon dioxide, which occurs in succulents belonging to Crassulaceae, cacti, euphorbias and some other plants of dry habitats where the stomata remain closed during the daytime and open only at night.

117 (c)

A-Close, B-CO₂. Water stress causes the stomata to close hence, reducing the CO₂ availability

118 (a)

Assimilatory power, i.e., ATP and NADPH₂ should produced during light reaction of photosynthesis.

119 **(b)**

Grana are the stacks of thylakoids which contain photosynthetic pigments. Therefore, grana are the sites of light reaction.

120 (d)

In bundle sheath cell C₃-cycle performed. So, these cells have high number of RuBisCo as compared to other cells

121 (d)

In C₄-plants, carbon dioxide is picked up by phosphoenol pyruvate (PEP) and the reaction being catalysed by PEP carboxylase.

122 (c)

Conversion of carbon dioxide to simple (reduced) organic compounds is called carbon dioxide assimilation or carbon dioxide fixation or carbon fixation. This fixation pathway was elucidated in the early 1950s by Melvin Calvin and coworkers and is often called as Calvin cycle.

Since, one molecule of carbon is fixed in one turn of the Calvin cycle. So, six turns of the cycle are required to fix the glucose molecule containing six 130 (b) carbon atmos.

123 (d)

The light reaction of photosynthesis ends up in the formation of NADPH₂ from NADP⁺

124 **(b)**

In C₄-plants, the Hatch and Slack pathway involves two carboxylation reaction, one taking place in chloroplast of mesophyll cells and other in chloroplast of bundle sheath cells.

125 (d)

Synthesis of sugars or carbohydrates is called the biosynthetic phase of photosynthesis. This process does not directly depends on the presence of light but is dependent on the products of the light reaction, *i.e.*, ATP and NADPH, besides CO_2 and H_2O . This could be verified immediately after light becomes unavailable. The biosynthetic process continues for sometime and then stops. If then, light is made available, the synthesis starts again

126 **(b)**

Light reaction begins with the PS-II. In photosystem-II the reaction centre chlorophyll-a absorb 680 nm. wavelength of red light causing electrons to become excited and jump into orbit further from the nucleus. These electrons are picked up by an electron acceptor, which passes them to an electron system consisting of cytochromes

127 (b)

CO₂ assimilation during photosynthesis generally takes place in two ways in plants

(i) **C**₃ **pathway** Those plants in which the first product of CO₂ fixation is a C₃ acid (PGA), *i.e.*, the C_3 pathway

(ii) **C**₄ pathway Those plants in which the first product C₄ acid (OAA), *i.e.*, the C₄ pathway

128 **(b)**

Blackman (1905) extended the law of minimum to formulate the law of limiting factors, which in his own words is 'when a process is conditioned as to its rapidity by a number of separate factors, the rate of the process is limited by the pace of slowest factor.'

129 (d)

Only PS-I is involved in cyclic photophosphorylation the formation of ATP when the electrons move down hill in term of redox potential

Julius Robert Mayer gave name chlorophyll to green pigment present in autotrophs.

131 (a)

Within the chloroplast, there is the membranous system (grana, stroma lamellae) and fluid it is called stroma

132 (c)

Joseph Priestley observed that a candle burning in a closed, a bell jar, soon gets extinguished. Similarly, a mouse would soon suffocate in a closed space. He conclude that a burning candle or an animal that breathe the air, both somehow, damage the air.

But when he placed a mint plant in the same bell jar, he found that the mouse stayed alive and the candle continued to burn. Priestly hypothesised that plants restore to the air whatever breathing animals and burning candles remove

133 (d)

In photorespiration, the three subcellular compartments namely, the chloroplast, peroxisomes and mitochondria are involved

134 **(c)**

The first step in dark reaction of photosynthesis is Carboxylation, in which six molecules of carbon dioxide Carboxylation, in which six molecules of carbon dioxide combine with six molecules of ribulose 1, 5-biphosphate (RuBP) to form six molecules of unstable six carbon compound. Carboxylation of RuBP is catalysed by the enzyme RuBP carboxylase or **RUBISCO**.

135 **(d)**

The other names for Calvin cycle are Calvin Benson Cycle, C_3 -cycle, and reductive pentose phosphate pathway

136 **(b)**

CO₂ assimilation during photosynthesis generally takes place in two ways in plants

(i) C_3 pathway Those plants in which the first product of CO_2 fixation is a C_3 acid (PGA), *i.e.*, the C_3 pathway

(ii) **C₄ pathway** Those plants in which the first product C₄ acid (OAA), *i.e.*, the C₄ pathway

137 **(c)**

Ultimately, all living forms on the earth depends on sunlight for energy. The use of energy from sunlight by the plants for doing photosynthesis is the basis of life on earth. Photosynthesis is important due to two reasons. It is the primary source of food on earth and it is responsible for the release of oxygen into the atmosphere by green plants

138 **(d)**

Photolysis of water involves the splitting of water molecules into OH^- and H^+ ions in the presence of light. This phenomenon is associated with pigment system-II and is catalysed by the presence of Mn^{2+} and CI^- ions.

139 **(a)**

Calvin cycle or dark reaction is the reductive carboxylation leading to the formation of sugar. That's way, it is also called the reductive pentose pathway

140 **(c)**

Triose phosphate isomerase enzyme converts glyceraldehydes-3 phase molecule into dihydroxy acetone phosphate. Then an enzyme **transketolase** comes, which acts on sedoheptulose-7-phosphate molecule and changes it into ribulose-5phosphate and xylulose-5-phosphate. Then ribulose-5-phosphate isomerase enzyme comes and acts on ribulose-5-phosphate. This reactionhas a molecule of ribulose-5-phosphate, while xylulose-5-phosphate molecule is also converted into ribulose-5-phosphate by ab other enzyme, ribulose-5-phosphate epimerase.

141 **(a)**

Etiolation involves the destruction of chloroplasts and, hence all the chlorophyll when the plants are grown in dark.

142 **(b)**

DCMU (Dichlorophenyl dimethylurea) is a herbicide, which inhibits oxygen evolution and non-cyclic photophosphorylation. Oxygen evolution and non-cyclic photophosphorylation, both are involved in PS-II

143 **(c)**

Pigments are embedded in thylakoids. According to **Emerson**, there are two systems, PS-I lies on outer surface and PS-II in inner surface of thylakoids.

144 **(d)**

The Russian botanist Mikhail Tswett is credited with the original development of a separation technique that we now recognise as a form of chromatography. In 1903, he reported the successful separation of plant pigments by using a column of calcium carbonate

145 **(d)**

Like green plants, some purple and green sulphur bacteria are capable of synthesising their organic food in presence of light, which is known as **bacterial photosynthesis.**

146 **(a)**

In 1845, Liebig proved that organic matter synthesised during photosynthesis is derived from carbon dioxide and water

147 **(d)**

Photophosphorylation is the synthesis of ATP from ADP and inorganic phosphate in the presence of sun-light. When the two photosystems work in series, first PS-II and then the PS-I, a process called non-cyclic Photophosphorylation occurs. The two photosystems are connected through an electron transport chain in the Z-scheme (due to the shape of path of electrons flow). Both ATP and NADH+H⁺ are synthesized by this kind of electron flow.

148 **(a)**

Melvin Calvin used radioactive ¹⁴C in algal photosynthesis, which led to the discovery that the first CO₂ fixation product was a 3-carbon organic acid. He also contributed to working out the complete biosynthetic pathway; hence it was called **Calvin cycle** after him.

The first product identified was **3phosphoglyceric** acid or **PGA.** For this, he was awarded Nobel Prize

149 **(b)**

Water is oxidised by PS-II, the reaction is $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$ These electrons goes to the PS-I one by one through ETS (Electron Transport System) on

reaching to the PS-I. They reduces NADP⁺ to NADPH + H⁺

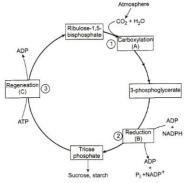
150 **(d)**

PS-I is present on both the non-appressed part of grana thylakoids as well as on stroma thylakoids

151 **(b)**

Anthocyanin is water soluble pigment. It constitutes a class of natural phenolic product. These provide colour to petals and fruit. Chlorophyll-*a* and *b* are water insoluble pigments. They are soluble in organic solvents

152 **(a)**


 C_4 -plants have very little photorespiration because its initial carbon fixation is done by PEP carboxylase not by Rubisco. Beside this, C_4 -plant generate their own CO_2 by decarboxylation of C_4 acids in bundle sheath. Due to these reasons, the C_4 -plants minimise photorespiration

153 **(b)**

Photolysis is the phenomenon of breaking up of water into hydrogen and oxygen in the illuminated chloroplasts. It is also called, photocatalytic splitting of water. It requires light energy, an oxygen evolving complex and an electron carrier. It also requires the ions, CI⁻, Mn²⁺

154 **(c)**

The Calvin cycle proceeds in three stages (1) carboxylation, during which CO_2 combines with ribulose 1, 5-bisphosphate; (2) reduction, during which carbohydrate are formed at the expense of the photochemically made ATP and NADPH; and (3) regeneration during, CO_2 acceptor is ribulose 1, 5-bisphosphate is formed again so that the cycle continues. Regeneration of the CO_2 acceptor molecule, RuBP is crucial if the cycle is to continue uninterrupted. The regeneration steps require one ATP for phosphorylation to form RuBP

155 **(b)**

During Photophosphorylation, ATP is formed. **156 (a)**

Usually with increase in light intensity the rate of photosynthesis increased. At very high light intensity the cells exhibit photooxidation by the process of solarization and if continues for few hours, the photosynthetic apparatus is destroyed.

157 **(d)**

Due to the higher value of CO₂ and ATP, the rate of Calvin cycle increases to form carbohydrate (starch). This leads to inhibition of photorespiration (glycolate cycle) and Kreb's cycle

158 **(c)**

During the photosynthesis within chloroplast protons in the stroma decreases in number, while in lumen there is accumulation on protons. This create a proton gradient across the thylakoid membrane as well as a measurable decrease in pH (acidic) in the lumen

159 **(b)**

Chlorophyll structure was studied by Wilstatler, Stoll and Fisher in 1912. It has a tadpole like structure with head called porphyrin and a tail made up of long chain alcohol called phytol. Porphyrin head is made up of four pyrrole rings, which are linked by methane a bridges (-CH =)

160 **(b)**

Members of family-Crassulaceae perform CAM photosynthesis.

161 **(c)**

A-Tropical, B-Temperate. Tropical plants have a higher temperature optimum than the plants adopted to temperate climate

162 **(d)**

Ancient plants were like cyanobacteria. These plants used hydrogen source other than water and, therefore, did not release oxygen from photolysis of water.

163 **(d)**

Photorespiration (C_2 cycle) is a special type of respiration shown by many green plants (C_3 plants) when they are exposed to light. It is a light dependent process during which oxygen is used and carbon dioxide is released. The process of photorespiration takes place only in chlorophyllous tissues of plants. Therefore, the main site for photorespiration is chloroplast. But mitochondria and peroxisomes are peroxisomes are also required to complete the process.

164 **(a)**

Electrons are transferred to hydrogen carrier, which is located towards the outer side of the membrane

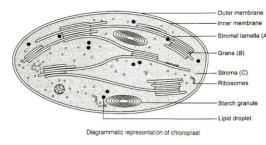
165 **(a)**

Hill reaction also called light reaction is a photochemical reaction. In this, reduced enzymes and phosphate bond energy (ATP) are produced.

166 **(d)**

In chloroplast, the light reaction occurs in grana and dark reaction in stroma

167 **(b)**


PS-II absorbs maximum 680 nm wavelength of light, thus reaction centreis P₆₈₀.P₆₈₀ (PS-II) extracts an electron from water, returning to its unexcited state because hydrolysis of water occurs in PS-II. Oxygen evolved in PS-II comes from water.

168 (d)

Cyclic-photophosphorylation involves only pigment system-I. When the photons activate PS-I, a pair of electrons are raised to higher energy level. They are captured by primary acceptor, which passes them on to ferredoxin, plastoquinone, cytochrome complex, plastocyanin and finally back to reaction centre of PS-I, *i.e.*,P₇₀₀. At each step of electron transfer, the electrons lose potential energy. Their trip down hill is caused by the transport chain to pump H⁺ across the thylakoids membrane. The proton gradient thus established is responsible for forming ATP (2 molecules). But no reduction of NADP to NADPH+H⁺ takes place.

169 **(b)**

A-Stroma lamella, B-Grana, C-Stroma

170 (a)

A-680 nm, B-electron donor, C-cytochromes 171 (d)

 C_4 -plants show Kranz anatomy. In these plants, the primary carbon dioxide acceptor in mesophyll cells is phosphoenol pyruvate (PEP). In light reaction of photosynthesis, PS-II absorbs energy at or just below 680 nm, while PS-I absorbs energy at 700 nm.

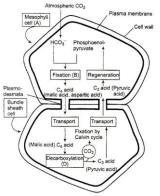
172 **(a)**

In C₄-plants, the PEP case is present in mesophyll cells (C₄-cycle) and RuBisCo is present bundle sheath cells (c_3 -cycle)

173 **(b)**

 C_4 -pathway occurs in some tropical plants having Kranz anatomy (undifferentiated mesophyll around vascular bundles with chloroplast containing bundle sheath). The final CO₂ fixation occurs in bundle sheath cells.

174 **(b)**


The correct equation that would represent the overall process of photosynthesis is

 $\begin{array}{c} 6\text{CO}_2 + 12\text{H}_2\text{O} \xrightarrow{\text{Light}} \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{H}_2\text{O} + 6\text{O}_2\\ 175 \text{ (a)} \end{array}$

The site for photorespiration is chloroplast. Peroxisomes and mitochondria are required for completing the process. This happens at high temperature and high oxygen concentration. Lysosome are not involved in photorespiration

176 **(a)**

In the hatch and Slack pathway (C_4 -cycle), the first stable compound is C_4 organic acid called oxaloacetic acid

177	(b) Englemann studied the effect of different region of		photosynthetic carbon fixation. Mg ²⁺ is an activator of RuBisCo
	the visible spectrum on the rate of photosynthesis	186	
	of different algae. The amount of oxygen release		The phenomenon of photolysis of water during
	was found to be maximum in blue and red		photosynthesis is associated wit photosystem-II
	absorption bands of chlorophyll.		and catalysed by presence of Mn^{2+} and CI^{-} ions.
178			When PS-II is active, the water molecules split
	The empirical formula of chlorophyll-a		into OH [–] and H ⁺ ions.
	isC ₅₅ H ₇₂ O ₅ N ₄ Mg.	187	(b)
179	(b)		RuBisCo.
	Oxygen, which is liberated during photosynthesis		RuBisCo is the most abundant enzyme in the
	comes from water.		world. It is characterised by the fact that active
	$4\mathrm{H}_2\mathrm{O} \rightleftharpoons 4\mathrm{H}^+ + 4\mathrm{OH}^-$		sites can bind to both CO_2 and O_2 . This binding is
	$40\mathrm{H}^{-} \xrightarrow{\mathrm{Mn}^{+},\mathrm{CI}^{-}} 2\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}\uparrow + 4e^{-}$		competitive. It is the relative concentration of O_2
180			and CO_2 that determines, which of two (CO_2 and
	It is estimated that photosynthetic organism		O_2) will bind to enzyme
	remove 100×1015 grams (.1015 + tonn) of	188	
	carbon/year (Houghton and Wood well 1990)		Dicker and Tio (1959) discovered
181	(d)		photorespiration in tobacco plant. It is a light
	Light reaction starts when solar radiation or light		dependent process of oxygenation of
	falls on the PS-II. Light reaction is also called		ribulosebisphosphate (RuBP). During this
	photochemical phase, which includes light		process, carbon dioxide is liberated and oxygen is
	absorption, water splitting, oxygen release and		consumed. C ₄ -plants avoid photorespiration by
	formation of high energy chemical inter mediates	189	following Hatch-Slack pathway.
	like ATP and NADPH	109	Flow of electrons in the non-cyclic
182			photophosphorylation is always unidirectionally,
	In Out		from PS-II to the PS-I
	Six CO2One glucose18 ATP18 ADP	190	
	12 NADPH 12 NADP		Joseph Priestley (1733-1804) in 1770 performed
183			a series of experiment that revealed the essential
	Minimum photosynthesis occur in the green		role of air in growth of green plant. He also
	wavelength. Plants grow under the canopy like		discovered oxygen in 1774
	herbs and shrubs receive very little red and blue-	191	(d)
	violet light because of its absorption by leaves of		Pigment system-II (PS-II) has absorption maxima
	the canopy. They receive more of green light that		at 680 nm and is called P_{680} .
	is transmitted through leaves. As a result, the	192	
	photosynthesis in herbs and shrubs is		Mesophyll cells and bundle sheath cells which are
404	comparatively low		connected through plasmodesmata, through
184			which organic acid like malic acid, pyruvic acid can translocate. Malic acid translocate from the
	PEPcase has an advantage over the RuBisCo		mesophyll cells to bundle sheath cell and pyruvic
	because PEPcase does not bind to the oxygen. But RuBisCo binds with oxygen and does the		acid translocate from the bundle sheath cells to
	photorespiration, which is a harmful and wastage		mesophyll cells
	process and leads to decrease in photosynthetic	193	
	yields	270	The light intensity at which a plant can achieve
185	-		maximum amount of photosynthesis is called
	RuBisco (Ribulose, 1-5 biphosphatase carboxylase		saturation point
	and oxygenase) is the main critical enzymes in	194	-

Sunken stomata are usually found in crassulacean 203 (b) acid metabolic plants. Such automata remain situated below the epidermis and open at night.

195 (b)

In C₄-plants the Calvin cycle takes place in bundle sheath cells

196 (b)

The C₃-plant shows optimum photosynthesis at high CO₂ concentration

197 (b)

During C₄-cycle, the first C₄ acid formed is oxaloacetic acid in chlorophyll of mesophyll cells. Then this oxaloacetic acid changes into another C₄ acids like malic and aspartic acid in mesophyll and bundle sheath cells respectively

198 (a)

Reduction of NADP⁺ to NADPH occurs during non-cyclic Photophosphorylation of light reaction, while oxidation of NADPH takes place during Calvin cycle.

Teporphyrin ring of chlorophyll a flat, square, structure of alternating single and double bonds containing four smaller pyrrole rings with a magnesium atom at the centre.

199 (c)

C₄-plants have Kranz anatomy in their leaves. In this leaf, the vascular bundle is surrounded by bundle sheath and mesophyll cells. Chloroplasts in the bundle sheath cells lack grana, while mesophyll chloroplasts are normal, e.g. sugarcane, maize, Euphorbia, Amaranthus, Sorghum, Portulaca and Chenopodium.

200 **(b)**

Oscillatoria is a photosynthetic cyanobacterium. In this, photosynthesis water is electron donor and oxygen is a byproduct, *i.e.*, oxygenic photosynthesis occurs. Rhodospirillum and Chlorobium are non-oxygenic photosynthetic, purple non-sulphur and green-sulphur bacteria. Chromatium is purple sulphur bacterium and also non-oxygenic photosynthetic.

201 (c)

C₄-plants are special They have a special type of leaf anatomy, they tolerate higher temperature, they show a response to high light intensities, they lack a process called photorespiration and have greater productivity of biomass

202 (c)

Most of the photosynthesis takes place in blue and $|_{209}$ (d) red region

The addition of NaHCO₃ to water in the given experimental set-up causes the availability of more carbon dioxide for photosynthesis. Thus, amount of oxygen evolved increases.

204 (a)

Cornelius van Niel (1897-1985) who based on his studies on purple and green bacteria, demonstrated that photosynthesis is essentially a light dependent reaction in which hydrogen from a suitable oxidisable compound reduces carbon dioxide to carbohydrate. This can be expressed by

 $2H_2A + CO_2 \xrightarrow{\text{Light}} 2A + CH_2O + H_2O$ In green plants, H_2O is the hydrogen donor and is oxidised to O₂ photosynthesis. Some organism do not release O₂ during photosynthesis. When H₂S instead is the hydrogen donor for purple and sulphur bacteria, the oxidation product is sulphur or sulphate depending on the organism and not O_2 . Hence, he inferred that O_2 evolved by green plant comes from H_2O , not from carbon dioxide

205 (d)

Ruben and Kamen (1941) and Ruben *et al* (1941) suspended Chlorella in water having nonradioactive heavy isotope of oxygen ¹⁸0, instead of natural oxygen (¹⁶0). The suspension was illuminated. Oxygen evolved was tested by means of mass spectrometer. It was found to be having isotope, O¹⁸. This is possible only if, oxygen evolved during photosynthesis comes from splitting of water

$$6\text{CO}_2 + 12\text{H}_2\text{O}^{18} \xrightarrow[\text{Chlorophyll}]{\text{Chlorophyll}} \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{H}_2\text{O}$$
$$+ 6 \text{O}_2^{18}$$

206 (d)

Photosystem-I is located on both the nonappressed part of grana thylakoids as well as stroma thylakoids, while photo system-II is located in the appressed part of the grana thylakoids.

207 (a)

A possible location for the cyclic phosphorylation is the stroma lamellae because stroma lamellae lacks PS-II as well as the NADP reductase enzyme

208 (d)

Plastocyanin is a small (10.5 KDa), water soluble, copper containing protein that transfer electrons between the cytochrome- $b_6 - f$ complex and P₇₀₀. During phosphorylation, the chloroplast stroma is less acidic than the interior of thylakoid membrane because accumulation of protons during electron transport chain occurs in the lumen of thylakoid

210 **(c)**

Ribulose bisophosphate carboxylase oxygenase and phosphoenol pyruvate carboxylase are critical enzymes in photosynthetic carbon fixation. Mg²⁺Is an activator for both the enzymes?

211 **(b)**

In 1939, **Robin Hill** demonstrated photolysis of water by isolated chloroplast in the presence of suitable electron acceptor.

212 **(c)**

Ottowarburg made an observation that O_2 inhibits photosynthesis in C_3 -plants. This phenomenon is originally known as the Warburg effect. It was latter recognised as the light dependent release of CO_2 due to oxygenase activity of RuBisCo called photorespiration

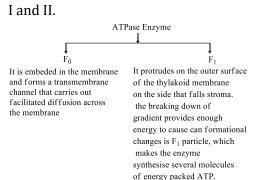
213 **(b)**

After the fixing of CO_2 to Oxaloacetic Acid (OAA) in C_4 cycle, the oxaloacetic acid changes into the malic aspartic acid

 $OAA + NADPH \xrightarrow{Malic acid dehydrogenase} Malic acid + NADP^+$

 $\begin{array}{l} \text{OAA} + \text{NH}_3 + \text{NADPH} \xrightarrow{\text{Transaminase}} \text{Aspartic acid} \\ + \text{NADP}^+ + \text{H}_2\text{O} \end{array}$

Both of these reactions occur in mesophyll cell


214 **(b)**

The portion of spectrum between 400-700 nm is referred to as Photosynthetically Active Radiation. Manganese and chloride ions play prominent role in photolysis of water.

215 **(b)**

ATP is synthesised by cells (in mitochondria and chloroplasts) and the process is named as phosphorylation. Photophosphorylation is the synthesis of ATP from ADP and inorganic phosphate in the presence of light. When the two photosystems work in a series, first PS-II and then the PS-I, a process called non-cyclic photophosphorylation occurs. The two photosystem are connected through an electron transport chain, as seen earlier- in the Z scheme. Both ATP and NADPH + H⁺ are synthesised by this kind of electron flow. When only PS-I is functional, the electron is circulated within the photosystem and the phosphorylation occurs due to the cyclic flow of electrons

216 **(b)**

217 **(d)**

Chemiosmosis requires a membrane, a proton pump, a proton gradient for making ATP through ATPase enzyme

218 **(a)**

Biosynthetic phase of photosynthesis depend on the NADPH and ATP. Both are used directly in the synthesis of glucose.

The energy required to hydrolyse the water comes from oxidising chlorophyll. Oxidation of chlorophyll occurs due to the release a high energy electrons from the chlorophyll

219 **(d)**

Kranz anatomy is the characteristics of C_4 -plants. The vertical section of leaves of C_3 and C_4 show differences. The C_4 leaves have particularly large cells around the vascular bundles of C_4 pathway plants called bundle sheath cells and the leaves which have such kind of anatomy are said to have 'Kranz-anatomy'. 'Kranz' means wreath and is reflection of arrangement of cells

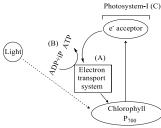
220 (a)

The process of photorespiration have the involvement of chloroplasts, peroxisomes and mitochondria. Biochemical mechanism for photorespiration is also called **glycolate cycle**.

221 **(b)**

Photosynthesis (*photos-light*; *synthesis*-putting together) is an anabolic process of manufacturing organic compounds inside the chlorophyll containing cells from carbon dioxide and water with the help of sunlight as the source of energy

222 **(c)**


Beyond the saturation point (seldom seen in C₄plants), the rate of photosynthesis begin to decline. This process is called solarisation. It is due to the reduction in hydration and closure of stoma (photo-inhibition) or oxidation of photosynthetic pigment (photoxidation)

223 **(b)**

A chemical substance, when irradiated with UV rays, absorbs radiation and emits visible light is called **fluorochrome**.

224 **(b)**

In cyclic photophosphorylation, only PS-I is functional and the formation of ATP takes place (not NADPH). The possible location of cyclic photophosphorylation is stroma lamella

225 **(a)**

Chlorophylls are magnesium porphyrin compounds. Chlorophyll-a (C₅₅H₇₂O₆N₄Mg) and chlorophyll-b (C₅₅H₇₀O₆N₄Mg), both consist of magnesium porphyrin head, which is hydrophilic and a phytol tail, which is lipophilic but chlorophyll-b differs from chlorophyll-a only in one of the functional groups bonded to porphyrin. Actually in chlorophyll-b, there is

- CHO(aldehyde) group instead of - CH₃(methyl)
 group at the third C-atom in second pyrrole ring.

226 **(b)**

PAR (Photosynthetically active radiation) designates the spectral range of solar radiation from 400 to 700 nm that photosynthetic organisms are able to use in the process of photosynthesis. Of the total incident solar radiation the proportion of PAR is less than 50%

227 **(c)**

Using a similar set up as used by Priestley but by placing it once in a dark and once in a sunlight, Jan Ingen Housz (1730-1799) showed that sunlight is essential to plant process that purifies air

228 **(c)**

Glucose is a hexose sugar. It's one molecule contains six carbon atoms. As Calvin cycle takes in only one carbon (as CO_2) at a time, six turns of this cycle will be required to produce one molecule of glucose (6C). Hence, for producing 5 molecules of glucose (30 molecules of carbon), 30 turns of Calvin cycle are required.

229 **(b)**

During the light reaction

(i) Formation of ATP from ADP takes place or phosphorylation of ADP to ATP takes place
(ii) Reduction of NADP⁺ to NADPH + H⁺ takes place by PS-I through electron transport system

230 **(d)**

ATP made when energy is used to bond another phosphate to ADP, a process called **phosphorylation**. In photosynthesis, the energy is supplied by light and the process is, therefore, called **photophosphorylation**.

231 **(b)**

TW Engelmann (1843-1909) performed an interesting experiment using a prism. He split light into its spectral components and then illuminated a green alga, *Cladophora*, placed in a suspension of aerobic bacteria.

The bacteria were used to detect the sites of O_2 evolution. He observed that the bacteria accumulated mainly in the region of blue and red light of the split spectrum. A first action spectrum of photosynthesis was thus described

232 **(a)**

Julius von Sachs provided evidence for the production of glucose when plants grow. Glucose is usually stored as starch. His later studies showed that the green substance in plants (chlorophyll as we know it now) is located in special bodies (later called chloroplast) within plant cells.

He found that the green parts in plants are where glucose is made, and that the glucose is usually stored as starch

233 **(d)**

Calvin cycle (C_3 -cycle) was discovered by **Calvin**, **Benson** and their associates, which fed *Chlorella* and *Scenedesmus* with radioactive carbon (C¹⁴) in carbon dioxide.

234 **(b)**

The movement of electrons in ETS of

photosynthesis is down hill in terms of oxidation reduction or redox potential scale. The electrons are not used up as they pass through the electron transport chain, but they passed on the pigments of photosystem I. Simultaneously, electrons in the reaction centre of PS-I are also excited, when they receive red light of wavelength 700 nm and are transferred to another acceptor molecule that has greater redox potential. These electrons than are moved down hill again this time to a molecule of energy rich NADP⁺. The addition of these electrons reduces the NADP⁺ to NADPH + H⁺

235 **(b)**

When P_r absorbs red light (660-665 nm) it is converted into P_{fr} from and when P_{fr} absorbs far red light (730-735 nm)it is converted into P_r from.

236 **(d)**

Kranz anatomy is a characteristic feature of the leaves of C₄-plants like sugarcane, maize, etc. in this type of anatomy, mesophyll cells are not differentiated into spongy and palisade cells and have chloroplasts with large grana. These are involved in the initial fixation of carbon dioxide. Bundle sheath chloroplasts are large and agranal and are highly efficient in carbon dioxide fixation, therefore, abundant starch grains are produced in these cells.

237 **(a)**

In the matrix or stroma, there are embedded a number of flattened membranous sacs called thylakoids or lamellae. Membranes of thylakoids are called fret membranes. They are made up of both proteins and unsaturated lipids, roughly in the ratio of 50:50

238 **(b)**

 C_4 -plants are more efficient in photosynthesis than C_3 -plants but use more energy. They possess the larger number of chloroplasts in the leaf cells. In the leaves of C_4 - plants, the vascular bundles are surrounded by bundle sheath of larger parenchymatous cells, which in turn are surrounded by mesophyll cells. Chloroplasts in bundle sheath cells are larger and always contain grana, whereas chloroplasts in mesophyll cells are smaller.

239 **(a)**

RuBPcarboxylase (RUBISCO) is the most abundant protein in chloroplasts and probably on earth. It catalyses the carboxylation of ribulose 1-5 bisphosphate to form two molecules of 3phosphoglyceric acid in C_3 -cycle of photosynthesis.

240 **(c)**

During the photolysis of water, the release of electrons, protons and oxygen takes place.

Reaction during the photolysis of water is follows $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$

241 **(a)**

Kranz anatomy, *i.e.*, chloroplast containing mesophyll cells and bundle sheath cells. The phosphoenol pyruvate in mesophyll cells combine with CO_2 in presence of PEP carboxylase and forms oxaloacetic acid and large bundle sheath are the characters of C_4 plants

242 **(c)**

In the leaves of C₄-plants, the bundle sheath consists of thick walled cylindrical cells. These cells have a granal chloroplast so density is low

243 **(b)**

Scheme of transfer of electrons, starting from the PS-II, uphill to the acceptor, down the electron transport chain to PS-I, excitation of electrons, transfer to another acceptor and finally down hill to NADP⁺ causing it to be reduced to NADPH + H⁺ is called the Z scheme, due to its characteristic shape. This shape is formed when all the carriers are placed in a sequence on a redox potential scale

244 **(b)**

Photophosphorylation in chloroplast is similar to the mitochondrial oxidative phosphorylation. In both of them, the proton gradient plays a significant role in chloroplast the proton gradient develops in the lumen and in mitochondria the proton gradient develops in the intermitochondrial space. Rest of the mechanism of phosphorylation remains the same in both the organelle

246 **(b)**

As a result of light reaction, oxygen, NADPH and ATP are formed. Oxygen is released into the atmosphere, while NADPH and ATP are utilised for reduction of carbon dioxide to carbohydrate in dark reaction.

247 **(a)**

At the low CO_2 and high O_2 concentration RuBisCo oxygenese activity increases. Binding with oxygen leads to the formation of 2phosphoglycolate and 3 phosphoglycerate

248 **(b)**

In C₄-plants the initial fixation of carbon dioxide occurs in mesophyll cell. The primary acceptor of CO_2 is phosphoenol pyruvate or PEP. It combines with carbon dioxide in presence of PEP

carboxylase or PEPcase to form oxaloacetic acid or oxaloacetate

 $PEP + CO_2 + H_2O \xrightarrow{PEP \text{ carboxylase}} Oxaloacetic acid$ $+ H_3PO_4$

249 (a)

The vertical section of leaves of C₃ and C₄ show differences. The C_4 leaves have particularly large cells around the vascular bundles of C₄ pathway plants called bundle sheath cells and the leaves which have such kind of anatomy are said to have 'Kranz-anatomy'. 'Kranz' means wreath and is reflection of arrangement of cells

250 **(b)**

Dark phase of photosynthesis or Calvin cycle takes place in stroma of chloroplast. First step of dark phase is Carboxylation. In Carboxylation, carbon dioxide is combined with RuBP to form first stable compound. $6RuBP + 6CO_2$

 $\xrightarrow{\text{RuBP carboxylase}} 12 \text{ phosphoglyceric acid}$ NADP⁺acts as hydrogen acceptor.

251 (b)

The Calvin cycle occurs in the stroma of chloroplast of C₃ plants and consists of three main parts, i.e., carboxylation, reduct5ion and regeneration. Carboxylation involves addition of carbon dioxide to ribulose 1,5-bisphosphate in presence of RUBISCO enzyme to form 3-PGA (3phosphoglyceric acid), *i.e.*, single carboxylation occurs in Calvin cycle.

252 (a)

Plants adapted to low light intensity have larger photosynthetic unit size than the sun plants.

253 (a)

Oxygen evolves by the oxidation of water molecule in the process called photosynthesis. Thus, it water is O¹⁸ labelled then oxygen liberated by process called photosynthesis must also be labelled

254 (a)

Algae (*Clodophora*).

Julius von Sachs provided evidence for the production of glucose when plants grow. Glucose is usually stored as starch. His later studies showed that the green substance in plants (chlorophyll as we know it now) is located in special bodies (later called chloroplast) within plant cells.

He found that the green parts in plants are where glucose is made, and that the glucose is usually stored as starch

255 (d)

Three molecules of carbon dioxide must be converted to glyceraldehydes 3-phosphate (three carbon molecules), three ATP and two NADPH are required for each carbon dioxide to be converted to glyceraldehydes-3-phosphate. $3CO_2 + 6NADPH + 9ATP \rightarrow Glyceraldehyde$

3-photophate + 6NADPH⁺ + 9ADP + P_i

256 (d)

Product of light reactions are ATP, NADPH and O₂. Of these O_2 diffuse out of the chloroplast, while ATP and NADPH are used to drive the process leading to synthesis of food, sugars. NADPH + H^+, O_2 , etc.

257 (b)

There is a point in the light intensity, where there is no gaseous exchange in photosynthesis. It is called light compensation point

258 (b)

During the dark reaction the acceptor of CO_2 is RuBP (Ribulose 1-5 diphosphate). After accepting, it forms the intermediately six carbon compound, which breaks down into two three carbon stable compound. It is called 3 PGA

259 (b)

The first reaction of photorespiration occurs in stroma of chloroplast. In this reaction, the RuBP (Ribulose 1, 5-biphophate) consumes one oxygen molecules in presence of enzyme RUBISCO. In peroxisome, the glycolate transferred from chloroplast, takes up oxygen and formed the glyoxylate whereas the H_2O_2 release as byproduct.

260 (d)

Phosphorylation refers to the process, in which ATP is made, when energy is used to bond another phosphate to ADP. In photosynthesis, they energy is supplied by light and the process is, therefore, called photophosphorylation.

261 (a)

Due to the difference in the pH of the two medium (outside and inside), there is development of proton gradient, which leads to the formation of ATP

263 (d)

If light becomes unavailable then the biosynthetic phase continues for sometime and then stops.

Product of light reactions are ATP, NADPH and O_2 . Of these O_2 diffuse out of the chloroplast, while ATP and NADPH are used to drive the process leading to synthesis of food, sugars. NADPH + H⁺, O_2 , etc.

264 **(d)**

During photosynthesis, the proton accumulation is towards the inside of the membrane, *i.e.*, in the lumen. In respiration, protons accumulate in the intermembrane space of the mitochondria when electrons move through the ETS

265 **(c)**

The C₄-plants have **dimorphic chloroplasts-granal** and **agranal**. Chloroplasts in mesophyll cells are granal, *i.e.*, they contain thylakoids that are stacked to form grana, as in C₃ —plants. Chloroplasts of **bundle sheath cells** are agranal, *i.e.*, grana are absent and the thylakoids are present only as stroma lamellae.

266 **(d)**

The uses of radioactive ¹⁴C by Malvin-Calvin in algal (*Chlorella*) photosynthesis studies, led to the discovery that first carbon dioxide fixation product was 3-carbon organic acid. This first product was identified as 3-Phosphoglyceric Acid (3PGA)

267 **(d)**

Hill's reaction/photochemical/light reaction is initiated when specific light is absorbed by group of chlorophyll molecules primarily concerned with light harvesting.

268 **(a)**

Fixing of one molecule of CO_2 or carbon needs 5 ATP and 2 NADPH in C_4 -plants. C_4 -plants takes 2 more ATP than C_3 -plants. But, the photorespiration is absent in C_4 -plants, thus C_4 plants are more economical than C_3 -plant

269 **(d)**

270 **(b)**

 CO_2 is required for photosynthesis is demonstrated by half-leaf experiment in which a part of a leaf is enclosed in a test tube containing some KOH soaked cotton (which absorbs CO_2), while the other half is exposed to air. The setup is then placed in light for some time. On testing for starch later in the two halves of the leaf, the exposed part of the leaf tested positive for starch while the portion that was in the tube, tested negative. This showed that CO_2 is required for photosynthesis Pineapple is a CAM (Crassulacean Acid Metabolic)plant, in this, the process of photosynthesis takes place in two different places, *i.e.*, light and dark

271 **(a)**

For every CO_2 molecule entering the Calvin cycle, 3 molecule of ATP and 2 molecule of NADPH are required. The difference in the number of ATP and NADPH used in dark reaction is overcome by cyclic phosphorylation

272 **(d)**

Proton gradient is important because it is the break down of this gradient that leads to release of energy. The gradient is broken down due to movement of protons across the membrane to the stroma through the transmembrane channel of the F_0 of the ATPase.

The energy released during the breaking down of proton gradient is used in formation of ATP

273 **(d)**

Plastoquinone is the first acceptor of electrons from an excited chlorophyll molecule of photo system-II.

274 **(a)**

Cytochromes are iron containing pigments. These acts as electron transporter or electron acceptor in respiration and photosynthesis

275 **(a)**

Oxaloacetic acid is a 4 C-compound. In C₄-plants, oxaloacetic acid is the first carbon dioxide fixation product.

276 **(a)**

Action spectrum.

Though chlorophyll-*a* is the major pigment responsible for trapping light, other thylakoid pigments like chlorophyll-*b*, xanthophylls and carotenoids, which are called accessory pigments, also absorb light and transfer the energy to chlorophyll-*a*. Indeed, they not only enable a wider range of wavelength of incoming light to be utilised for photosynthesis but also protect chlorophyll-*a* from photooxidation

277 **(b)**

A-with, B-decrease. Water stages leaves with thus reducing the surface area of leaves and their metabolic activity as well

278 **(c)**

Even after the closing, the stomata of C_4 -plants performs photosynthesis because they can produce their own CO_2 by decarboxylation of

plants The membranous system is responsible for 279 (d) trapping the light energy that make ATP and Photorespiration is the uptake of oxygen and NADPH necessary for the starch synthesis release of carbon dioxide in light that results from 287 (a) the biosynthesis of glycolate in chloroplast and Photophosphorylation is differ from oxidative subsequent metabolism of glycolic acid in the phosphorylation in requiring the input of energy same leaf cell through other two cell organelles in the form of light to create a good electron (i.e., peroxisome and mitochondria). Conversion donor. 288 (b) of phosphoglycolate to glycolate takes place in chloroplast. Cyclic phosphorylation occurs only when 280 (a) wavelength beyond 680 nm is available for The chemical formula of starch is $(C_6H_{10}O_5)_{n.}$ excitation. 281 (c) Non-cyclic phosphorylation occurs in the Emerson et al, (1957) discovered that far red light membrane or lamellae of grana. Because (above 680 nm), which is Photosynthetically membrane or lamellae of grana have both inefficient can be made efficient by supplementing photosystem (PS-I and PS-II) and in non-cyclic phosphorylation both PS-I and PS-II participates it with a beam of shorter wavelength (red beam below 680 nm). Further the quantum yield in 289 (a) combined beam (far red+red) is more than sum Cytochrome are the electrons carrier between the total of quantum yields in two separate beam. PS-II to PS-I in photosynthesis. If there is a This enhancement in quantum yield by mutation in cytochrome then the movements of supplementing far red light with red light is called electrons from PS-II to PS-I is inhibited Emerson enhancement effect. 290 (a) 282 **(b)** $6CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$ 291 **(b)** Carotenoids are a group of yellow, red and orange pigments, which function as accessory pigments Photolysis of water means breakdown of water in and protect chlorophyll molecules from the presence of sun light. This generates oxygen. destruction by intensive light rays. Carotenoids Photolysis of water takes place in light reaction have three absorption peaks in the **blue-violet** and it requires chloride and manganese ions as

malic acid, which is used in Calvin cycle like in C_{3} - 286 (d)

range of the spectrum. 283 **(b)**

The fixation of carbon dioxide in C_4 -plants takes place in two places and by two different organic compounds. Phosphoenol pyruvate (PEP) is found in mesophyll cells, which primarily fixes atmospheric carbon dioxide into oxaloacetic acid (4C). RUBISCO is present in bundle sheath cells, where final fixation of carbon dioxide in hexose sugar takes place. Carbon dioxide is primarily fixed by PEP carboxylase because this enzyme has greater affinity to carbon dioxide than RUBISCO.

284 **(b)**

CAM plants store large quantities of CO_2 at night and release it later during the day for use by the photosynthetic carbon reduction cycle. **Example**-*Kalanchoe*, *Agave*, *Opuntia*, etc.

285 (a)

RuBP (Ribulose, 1-5 diphosphate) is the 5 carbon compound in which the ribose sugar is present

292 (d)

catalyst.

Excited simultaneously with PS-II (P_{680}). The movement of electrons in ETS of photosynthesis is down hill in terms of oxidation reduction or redox potential scale. The electrons are not used up as they pass through the electron transport chain, but they passed on the pigments of photosystem I. Simultaneously, electrons in the reaction centre of PS-I are also excited, when they received red light of wavelength 700 nm and are transferred to another acceptor molecule that has greater redox potential. These electrons than are moved down hill again this time to a molecule of energy rich NADP⁺. The addition of these electrons reduces the NADP⁺ to NADPH + H⁺

293 (a)

In low carbon dioxide concentration, glycolic acid or glycolate is formed, which is the substrate for photorespiration or C2-cycle or glycolate metabolism.

294 (c)

Usually, the chloroplasts align themselves along the walls of mesophyll cells, such that they get the optimum quantity of the incident light

295 (b)

Photorespiration required chloroplast, mitochondria and peroxisome to complete the process. At high temperature and high oxygen concentration, RuBPoxygenase oxidizes RuBP to produce phosphoglycolate then glyoxylate and then glycine. Two glycine molecule in addition to α -ketoglutarate produce serine molecule. Therefore, to produce 20 serine molecules, 40 RuBP molecules are required.

296 (d)

In Calvin cycle, ribulose 1-5 biphosphate ultimately produces two molecules of 3 PGAL, *i.e.*, total 6 molecules by three Calvin cycles. In the same one ATP for each 3 PGAL molecules is phosphorylated (Total 6 ATP).

297 (a)

In C₄plants, primary CO₂acceptor is 3Ccompound, phosphoenol pyruvate (PEP) and is present in the mesophyll cells. The enzyme responsible for this fixation is PEP carboxylase or PEPcase.

298 (a)

CAM plants fix CO_2 at night and from malate which 307 (c) stored in large vacuole of mesophyll cells till next day. These plants use PEP carboxylase. The malate release CO_2 in day for use in Calvin cycle in same cell, e.g., family-Euphorbiaceae, Asclepiadaceae, etc.

299 (a)

A-C₃, B-2, C-5

300 (d)

PS-I (photosystem-I) is a photosynthetic pigment system along which some electron carriers that is located on both the non-appressed parts of grana thylakoids as well as stroma thylakoids. PS-II (Photosystem-II) is the photosynthetic pigment system along with some electrons carriers that is located in the appressed part of grana thylakoid

301 (a)

Calling the biosynthetic phase as the dark reaction is misnomer because without the light, the dark

reaction cannot sustain fore long. For the sake of simplicity, it is been called dark reaction

302 (c)

About 42% of solar radiation hits the earth's atmosphere.

303 (b)

The CO_2 formed in the bundle sheath cells by decarboxylation of malic acid used in the Calvin cycle. In that way, C_4 -plants have their own CO_2 for the Calvin cycle. That's why C₄-plants can perform Calvin cycle even in very low CO_2 concentration

304 (c)

Photophosphorylation is the formation of ATP from ADP and inorganic phosphate in the presence of light. When the two phosphates work in a series. (first PS-II and then PS-I) then noncyclic photophosphorylation occurs. The two photosystems are connected through an electron transport chain. Both ATP and NADPH are synthesised by this kind of electron flow

305 (b)

ATP is formed during photophosphorylation. Water does takes part in photosynthesis-oxygen comes from water not from carbon dioxide.

306 **(b)**

Cytochrome oxidase is an endoenzyme. This enzyme plays very important role in ETS of photosynthesis as well as respiration.

NADP⁺ to NADPH + H^+ .

During the light reaction

(i) Formation of ATP from ADP takes place or phosphorylation of ADP to ATP takes place (ii) Reduction of NADP⁺ to NADPH + H^+ takes place by PS-I through electron transport system

308 (a)

Cytochroma oxidase is an iron-containing key enzyme of mitochondrial respiration. Cytochrome oxidase (complex IV) is a large enzyme of inner mitochondrial membrane.

309 (d)

Kranz anatomy shows presence of rudimentary chloroplasts in bundle sheath cells and typical granal chloroplasts in mesophyll cells.

310 (a)

Oxaloacetic acid.

Plants that are adapted to dry tropical regions generally have the C₄ pathway. Though these plants have the C₄-oxaloacetic acid as the first CO₂ fixation product they use the C_3 pathway or the Calvin cycle as the main biosynthetic pathway

311 **(d)**

Photochemical reaction is also known as **light reaction** because it takes place in the presence of light in the grana portion of chloroplast. In this reaction, photolysis of water takes place, which generates oxygen,

simultaneously,**photophosphorylation** takes place which generates ATP and NADPH.

312 **(b)**

 C_4 -plants utilise solar energy more efficiently because photosynthesis rate is very high in C_4 plants, *e.g.*,**sugarcane**, **maize**, etc.

313 (a)

ATP and NADPH are consumed in the dark reaction for the formation of carbohydrates or starch with the help of RuBP

314 **(b)**

Mitochondria and chloroplast are the organelle, which forms ATP in the living system. In both the system the electron transport system is present through, which electrons are carried by carrier molecule down hill to redox. That's way carrier molecules are oxidised or reduced in chloroplast and mitochondria

315 **(b)**

The electrons that were moved from photosystem II must be replaced. This is achieved by electrons available due to splitting of water. The splitting of water is associated with the PS-II. Water is split into H⁺, O and electrons. This creates oxygen, one of the net products of photosynthesis. The electrons that are needed to replace those removed from photosystem-I are provided by photosystem-II

 $2\mathrm{H}_2\mathrm{O} \rightarrow 4\mathrm{H}^+ + \mathrm{O}_2 + 4e^-$

316 **(c)**

The pigments are organised into two discrete photochemical Light Harvesting Completes (LHC) within the Photosystem I (PS-I) and Photosystem II (PS-I). These are named in the sequence of their discovery, and not in the sequence in which they function during the light reaction. The LHC are made up of hundreds of pigment molecules bounded to proteins. Each photosystem has all the pigments (except one molecule of chlorophyll-*a*) forming a light harvesting system known as antenna Glucose phosphates formed in photosynthesis are asymmetrically labelled, it is called **Gibb's effect**.

318 **(a)**

Steps that causes proton gradient to develop during photophosphorylation are as follows (i) protons or hydrogen ions that are produced by the splitting of water accumulates within the lumen of the thylakoids

(ii) As electrons move through the photosystems, protons are transported across the membrane. This, happens because the primary acceptor of electron, which is located towards the outer side of the membrane transfers its electrons not to an electron carrier but to an H⁺ carrier. Hence, this molecule removes a proton from stroma, while electrons transporting

(iii) The NADP reducetase enzyme is located on the stroma side of the membrane. Along with electron, reduction of NADP⁺ to NADPH +H⁺ takes place. By this way, the proton removes from stromal side of the thylakoid.

Proton gradient is important because it is the break down of this gradient that leads to release of energy. The gradient is broken down due to movement of protons across the membrane to the stroma through the transmembrane channel of the F_0 of the ATPase.

The energy released during the breaking down of proton gradient is used in formation of ATP

319 **(a)**

Chlorophyll-*a*.

The pigments are organised into two discrete photochemical Light Harvesting Completes (LHC) within the Photosystem I (PS-I) and Photosystem II (PS-I). These are named in the sequence of their discovery, and not in the sequence in which they function during the light reaction. The LHC are made up of hundreds of pigment molecules bounded to proteins. Each photosystem has all the pigments (except one molecule of chlorophyll-*a*) forming a light harvesting system known as antenna

320 (c)

Oxygen and release of CO_2 takes place. Photorespiration is a light dependent utilisation of oxygen and release of carbon dioxide by photosynthetic organs of plant. Normally, photosynthetic organs do the reverse in the light, *i.e.*, uptake of CO_2 and release of O_2

321 (a)

317 (c)

Chlorophyll-*a* is found in all photosynthetic plants. Hence, it is termed as universal photosynthetic pigment. Bacteriochlorophyll are present in bacteria and bacteriochlorophyll-*a* resembles with chlorophyll-*a* in plants

322 **(b)**

(i) PS-I has more (about twice) chlorophyll-*a* than chlorophyll-*b*. PS-II has about equal amount of chlorophyll-*a* and chlorophyll-*b*

323 **(a)**

All animals including human beings depend on plants for their food. Green plants synthesize the food they need and all other organisms depend on them for their needs. Green plants carry out photosynthesis, a **physico-chemical** process by which they use light energy to drive the synthesis of organic compounds

324 **(d)**

In C₄-plants, chloroplasts are found in both bundle sheath and mesophyll cells. Chloroplasts in bundle sheath cells are larger and does not contain grana, whereas chloroplasts in mesophyll cells are smaller and have grana.

325 **(b)**

All the life forms are supported by the plants, whether, it is herbivore or carnivore. Chloroplast present in plants traps the solar energy and changes it to starch. This process is called photosynthesis. So, we are created by chloroplast means that all life forms depends on photosynthesis

326 **(c)**

C₄-plants are characterized by Kranz type of anatomy, i.e., chloroplast containing mesophyll cells and bundle sheath cells. The phosphoenol pyruvate in mesophyll cells combine carbon dioxide in presence of PEP carboxylase and forms oxaloacetic acid. The product of photosynthesis is starch.

327 **(c)**

HMP pathway occurs in **cytoplasm** of cell.

328 **(c)**

The energy required to hydrolyse the water comes from oxidising chlorophyll. Oxidation of chlorophyll occurs due to the release a high energy electrons from the chlorophyll

329 **(b)**

The chloroplasts in C_4 -plants are dimorphic (two morphologically distinct types). The chloroplasts of bundle sheath cells are large in size and

arranged centripetally. They mesophyll cells, on the other hand, contain normal type of chloroplasts.

330 **(b)**

PS-I is driven by far red light and PS-II by red light. The main components of PS-I are chl.-*a* (P_{700}), chl.-*b* and β -carotene.

331 **(d)**

Along with the NADPH produced by the movement of electrons, the ATP will be used immediately in the biosynthetic reaction taking place in the stroma, responsible for fixing CO_2 (reduction) and synthesis of sugars

332 **(b)**

Electron excited by PS-I used in the formation of NADPH + H^+ . These electrons come ultimately from H_2O through photosynthesis

333 **(c)**

Electrons during photosynthesis goes from the H_2O to the PS-II then by various cytochrome carrier. It reaches to PS-I then reaches to the NADP⁺ and reduces it in the presence of H⁺ to form NADPH + H⁺

334 **(b)**

Photorespiration is the light dependent process, in which utilisation of oxygen and release of carbon dioxide by the photosynthetic organs of a plant takes place. Normally, photosynthetic organs are reverse in the light, i.e., uptake carbon dioxide and release oxygen. This process is pronounced in C_3 -plants and negligible in C_4 plants. At high temperature, RuBP carboxylase functions as oxygenase and instead of fixing carbon dioxide, oxidises ribulose 1, 5-biphosphate to produce phosphoglyceric acid and phosphoglycolate (starting substrate). On hydrolyzing, it forms glycolate and then glyoxylate, glycine and serine respectively.

335 **(b)**

Photosynthesis is the endergonic used, *i.e.*, energy is used during physiochemical process in which the light gets converted into the high energy. Chemical bonds are used in the formation of sugar

336 **(c)**

Compensation point refers to alight intensity at which the rate of respiration by a photosynthetic cell or organ is equal the rate of photosynthesis. There is no net gain or loss of oxygen or carbon dioxide from the structure.

337 **(a)**

In Z-scheme of light reaction, the participating photosystem are PS-II and PS-I. Electrons are transported from PS-II to the PS-I through electron transport system by cytochromes

338 **(d)**

Though chlorophyll-*a* is the major pigment responsible for trapping light, other thylakoid pigments like chlorophyll-*b*, xanthophylls and carotenoids, which are called accessory pigments, also absorb light and transfer the energy to chlorophyll-*a*. Indeed, they not only enable a wider range of wavelength of incoming light to be utilised for photosynthesis but also protect chlorophyll-*a* from photooxidation

339 **(b)**

In CAM-plants, the stomata open at night. This allows the entry of carbon dioxide in the leaves. The carbohydrates stored in plants are converted to PEP by Glycolysis, which is carboxylated to malic acid. Thus, carbon dioxide is fused in plants as malic acid, which stored inside vacuole. In the day time, stomata close and the malate transported to chloroplast, undergoes decarboxylation and the released carbon dioxide is fixed by Calvin cycle.

340 **(c)**

Water is one of the reactant in the light reaction. The effect of water on photosynthesis is seen in the stress condition when water availability is very low. Water is also produced in dark reaction of photosynthesis. Water stress causes the stomata to close hence reducing, the availability

341 (d)

The site for photorespiration is chloroplast. RuBP carboxylase function as oxygenase and instead of fixing carbon dioxide, it convert oxidase ribulose 1-5 biphosphate (RuBP) to produce

phosphoglycerate and phosphoglycolate

$$RuBP + O_2 \xrightarrow[Oxygenase]{RuBP} PGA + Phosphoglycolate$$

342 (d)

The pigments are organised into two discrete photochemical light harvesting complexes (LHC) within the photosystem-I (PS-I) and photosystem II (PS-II)

343 **(b)**

Regeneration of PEP from pyruvate takes place in the bundle sheath cells and conversion of pyruvate in PEP takes plants in mesophyll cells Pyruvate + ATP $\xrightarrow{\text{Phosphopyruvate}}$ PEP + AMP + H₃PO₄

344 **(d)**

Pigments are substances that have an ability to absorb light at specific wavelength. Among all pigments, chlorophyll-*a* absorb the maximum wavelength in the blue and red region. In these region, the chlorophyll-*a* does the maximum photosynthesis. Thus, chlorophyll-*a* is called the main photosynthetic pigment

345 **(a)**

In far-rad light (wavelength more than 680 nm), there is a reduction in the quantity of O_2 evolution.

346 **(a)**

Photorespiration is the light dependent utilization of O_2 and release of CO_2 by photosynthetic organs of a plant Photo respiration involves chloroplast, Peroxisome and mitochondria to complete the process.

347 **(a)**

In higher plants, enzymes for light independent reactions (dark reactions) are present in the stroma of chloroplasts. Light dependent reaction occurs in grana of chloroplast.

Ribosomes are necessary for protein synthesis. **Chlorophyll** is green photosynthetic pigment found in chloroplasts.

348 (d)

Carbon dioxide is the major limiting factor for photosynthesis. The concentration of CO_2 is very low in the atmosphere (Between 0.03 to 0.04% or 300-400 ppm). Increase in concentration up to 0.05% can cause an increase in CO_2 fixation rates. Beyond this, the levels can become damaging over longer periods

349 (d)

Maximum photosynthesis occurs in the blueviolet and red region of light spectrum. Red light favours the carbohydrate accumulation, while blue light stimulates protein synthesis

350 **(c)**

Maximum number of chloroplast is found in leaves

351 **(d)**

 C_4 -plants (maize) require 30 ATP and 12 NADPH for synthesis of one hexose molecule. Therefore, synthesis of six hexose molecules requires 180 ATP and 72 NADPH.

352	The first step in dark reaction of C ₃ plants is carboxylation of ribulose 1-5 biposphate by atmosphere CO ₂ in presenic of enzyme, Rubisco to form PGA Ribulose 1-5 bisphosphate+CO ₂ + $H_2O \rightarrow 3$ PGA.	360 361	Non-cyclic phosphorylation occurs in the membrane or lamellae of grana. Because membrane or lamellae of grana have both photosystem (PS-I and PS-II) and in non-cyclic phosphorylation both PS-I and PS-II participates
354	(d)	362	(d)
355	Ruben, Hassid and Kamen proved that oxygen evolved in photosynthesis comes from water. (a) Compensation point refers to the light intensity, at which the rate of respiration by photosynthetic cell or organ is equal to the rate of photosynthesis. There is no net gain or loss of oxygen or carbon dioxide from the structure (b) Living organisms have the capability of extracting energy from oxidisable substances and store this the in form of bond energy. Special substances like ATP, carry this energy in their chemical bonds. The process through which ATP is synthesised by cells (in mitochondria and chloroplast) is named oxidative phosphorylation	363	Carboxylation (In C ₃ -cycle) It is the fixation of CO ₂ into a stable organic intermediate. Carboxylation is the most crucial step of the Calvin cycle, where CO ₂ is utilised for the carboxylation of RuBP. This reaction is catalysed by the enzyme RuBP carboxylase, which results in the formation of two molecules of 3-PGA. Since, this enzyme also has an oxygenation activity. It would be more correct to call it RuBP carboxylase-oxygenase or RuBisCo (a) Mesophyll cell. After the fixing of CO ₂ to Oxaloacetic Acid (OAA) in C ₄ cycle, the oxaloacetic acid changes into the malic aspartic acid OAA + NADPH $\xrightarrow{\text{Malic acid dehydrogenase}}$ Malic acid + NADP ⁺
357	Malic acid or aspartic acid is translocated to bundle sheath cells through plasmodesmata. Inside the bundle sheath cell they are decarboxylated (malic acid) or deaminated. In case of aspartic acid to form CO_2 and pyruvate. After the fixing of CO_2 to Oxaloacetic Acid (OAA) in C_4 cycle, the oxaloacetic acid changes into the malic aspartic acid OAA + NADPH $\xrightarrow{\text{Malic acid dehydrogenase}}$ Malic acid + NADP ⁺ OAA + NH ₃ + NADPH $\xrightarrow{\text{Transaminase}}$ Aspartic acid + NADP ⁺ + H ₂ O Both of these reactions occur in mesophyll cell	364 365 366 367 368	Photorespiration takes place only in C ₃ -plants. (b) 90% photosynthesis (<i>CO</i> ₂ assimilation) in the world is done by algae (photoplanktons). (c) In C ₄ -plants, agranal chloroplast is present in bundle sheath cells, <i>e.g.</i> , sugarcane leaf. (b) Aldolase enzyme is found in chloroplast. (d)
358			Emerson and Arnold (1932) established light and dark phases in photosynthesis with the help of
	Four pyrrole ring. Chlorophyll- <i>a</i>		flashing light and Emerson concluded two distinct
359			photochemical process in light reaction of photosynthesis.

369 **(a)**

For every CO_2 molecule entering the Calvin cycle (the reduction and regeneration steps), three molecules of ATP and two molecules of NADPH+H⁺ are required.

370 (a)

In Calvin cycle for every carbon dioxide molecule, 3 molecules of ATP and 2 NADPH are required. To make one molecule of glucose 6 turns of the cycle are required. Thus, 18 ATP and 12 NADPH molecules will be required to make one molecule of glucose through Calvin cycle.

371 **(b)**

C₃-pathway.

Plants that are adapted to dry tropical regions generally have the C_4 pathway. Though these plants have the C_4 -oxaloacetic acid as the first CO_2 fixation product they use the C_3 pathway or the Calvin cycle as the main biosynthetic pathway

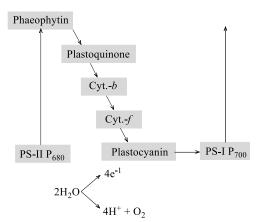
372 **(d)**

 C_3 and C_4 -cycle are the two parts of biosynthetic phase of photosynthesis in C_4 -plant but in C_3 plant, only C_3 cycle occurs. The enzyme in these two cycles are present in chloroplast not in Golgi bodies

373 **(c)**

Photosynthetically Active Radiation (PAR) is 400-700 nm.

374 **(c)**


 C_4 Plants have 'Kranz type' anatomy. Vascular bundles are surrounded by bundle sheath cells. The chloroplasts are dimorphic. The cells of bundle sheath have very large chloroplasts. They lack grana and contain starch grains. They are centripetally arranged white mesophyll cells have small and granal chloroplast.

375 **(b)**

Photorespiration takes place in the photosynthetic cells, *eg*, green parts of plant in the presence of light.

376 **(b)**

In the given schematic diagram, D is representing plastocyanin.

377 (a)

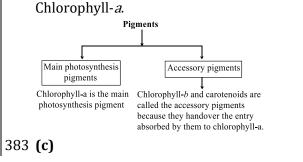
Photochemical reaction is also known as light reaction because it takes place in the presence of light in the grana portion of chloroplast. In this reaction, photolysis of water takes place, which generates ATP and NADPH

378 (a)

Non-cyclic photophosphorylation includes both photo system II and I. The process requires an external electron donor. The electrons released during photolysis of water are picked up by photocentre of PS-II calledP₆₈₀. The flow of electrons is unidirectional. Electrons are not cycled back and are used in the reduction of NADP toNADPH₂. In this, high energy electrons released from 'P₆₈₀' do not return to 'P₆₈₀' but pass through phaeophytin, plastoquinone, cytochrome- $b_6 - f$ complex, plastocyanion and then enterP₇₀₀. In transfer of electrons from PQ to Cytochrome- $b_6 - f$ complex, ATP is synthesised.

379 (a)

RuBisCo is the most abundant protein of the biological world. It constitutes 16% of the chloroplast proteins. Rubisco is located on the outer surface of thylakoid membrane


380 (d)

The chlorophylls are basically chelate salts of **magnesium (Mg)**.

381 (a)

Ammonia is released from photorespiration.

382 **(b)**

Formation of ATP in mitochondria is called oxidative phosphorylation.

The electrons that were moved from photosystem II must be replaced. This is achieved by electrons available due to splitting of water. The splitting of water is associated with the PS-II. Water is split into H⁺, O and electrons. This creates oxygen, one of the net products of photosynthesis. The electrons that are needed to replace those removed from photosystem-I are provided by photosystem-II

 $2H_20 \rightarrow 4H^+ + 0_2 + 4e^-$

384 **(b)**

Raphids are needle-like long slender **calcium oxalate** crystals usually lying parallel to each other in a bundle, which is sometimes found in a special sac-like cell. Raphidsare commonly found in *Alocasia, Colocasia, Pistia,* etc.

385 **(c)**

Nucleus/core of chlorophyll contains magnesium. The chlorophylls are basically chelate salts of magnesium (Mg)

386 **(d)**

During the dark reaction, the starch (carbohydrates) synthesis takes place. The starch is the polymers of glucose having the formula $(C_5H_{10}O_5)_n$

387 **(b)**

In C_3 -plants, carbon dioxide combines with RuBP to form phosphoglyceric acid, on the other hand in C_4 -plants, carbon dioxide is first picked up by phosphoenol pyruvate (PEP) to form oxaloacetic acid.

388 **(c)**

Development of proton gradient across the membrane.

During the cyclic phosphorylation, the electrons does not pass to the NADP⁺ but cycled back to PS-I through electron transport chain. This cyclic flow hence, results only in the synthesis of ATP but no of NADPH + H⁺. Cyclic

photophosphorylation occurs when only light of wavelength beyond 700 nm is available for excitation

389 **(b)**

In photorespiration, the RuBP instead of being converted to two molecules of PGA binds with O_2 to form one molecules of PGA and phosphoglycolate. In the phosphorespiratory pathway, there is neither synthesis of sugars, nor of ATP. In this pathway there is no synthesis of ATP or NADPH. Therefore, it is a wasterful process.

390 **(c)**

Maximum photosynthetic rate has been observed in the full spectrum. Regarding the effect of the different wavelengths, maximum photosynthesis occurs in **red** light (660 nm) second maximum in **blue** (440 nm) and minimum in **green**.

391 **(b)**

Chloroplasts are found in the mesophyll cells of the leaves. Leaves have a maximum number of chloroplasts

392 **(d)**

New plastids arise from proplastids by a fission-like process.

393 **(c)**

Photosynthesis is an anabolic process of manufacturing of organic compounds. It is characterized by reduction of CO_2 and oxidation of water. It decreases the concentration of CO_2 in atmosphere but increases the concentration of O_2 .

394 **(d)**

RuBisCo is present in chloroplast

395 (d)

The leaves of C₄-plants have Kranz anatomy. In the leaf, vascular bundle is surrounded by bundle sheath and mesophyll cells. The bundle sheath consists of thick walled cylindrical cell. The chloroplasts of bundle sheath are larger than mesophyll cells. Most of the PEP carboxylase occurs in mesophyll cells, while most of ribulose 1-5 diphosphate carboxylase and malic enzyme in bundle sheath cells.

396 **(a)**

In C₃-plants, photorespiration takes place but this pathway is absent in C₄-plants

397 **(a)**

ATPase has two parts- F_0 and F_1 . F_0 part has channels through, which the diffusion of protons takes place

398 **(b)**

The Calvin cycle proceeds in three stages (1) carboxylation, during which CO_2 combines with ribulose 1, 5-bisphosphate; (2) reduction, during which carbohydrate are formed at the expense of the photochemically made ATP and NADPH; and (3) regeneration during, CO_2 acceptor is ribulose 1, 5-bisphosphate is formed again so that the cycle continues. Regeneration of the CO_2 acceptor molecule, RuBP is crucial if the cycle is to continue uninterrupted. The regeneration steps require one ATP for phosphorylation to form RuBP

399 **(c)**

RuBisCo is the most abundant enzyme in the world. It is characterised by the fact that active sites can bind to both CO_2 and O_2 . This binding is competitive. It is the relative concentration of O_2 and CO_2 that determines, which of two (CO_2 and O_2) will bind to enzyme

400 **(b)**

In the Calvin cycle, the RuBP combines with the CO_2 to form 2 molecules of 3 phosphoglyceric acid and the reaction is catalysed by RuBisCo

$$RuBP + CO_2 \xrightarrow{RuBISCO} 2 \times 3PGA$$

401 **(a)**

Cyclic phosphorylation operates only by PS-I during cyclic phosphorylation only. ATP formation takes place and recyclation of electrons also occurs. Unlike, the non-cyclic phosphorylation, splitting of H₂O does not take place in the cyclic phosphorylation

402 **(c)**

The carbon dioxide fixation takes place in the stroma of chloroplasts because it has enzymes essential for fixation of carbon dioxide and synthesis of sugar.

403 **(d)**

Some differences in C₃ and C₄ plants.

Some unterences in C_3	and C4 plants.
C ₃ -plants	C ₄ -plants
Algae (Chlorella),	Maize, sorghum,
sunflower, beans,	sugarcane and other
mustard, etc.	graminaceous plants.
Plants have Calvin	Plants have Hatch and
cycle.	Slack cycle.
	The first stable product
The first stable	is 4-C compound,
product of	oxaloacetic acid or
photosynthesis is 3-C	malic acid in
compound,	succulents.
phosphoglyceric acid	
(PGA).	There are two carbon
There is only one	dioxide acceptor, e.g.,
carbon dioxide	phosphoenol pyruvic
acceptor, e.g.,	acid and RuDP.
ribulose 1-5,	The leaves have Kranz
diphosphate.	anatomy.
Kranz anatomy is	The optimum temp. lies
absent.	between 30-45°C.
The optimum	No photorespiration.
temperature lies	
between 10-25°C.	Bundle sheath
Photorespiration	chloroplast lack
occurs, which	photosystem-II,
	therefore, depends

	reduces the photosynthetic yield. Chloroplast have PS-I and PS-II	upon mesophyll for supply of NADPH + H ⁺				
404						
	In Calvin cycle, 18 molecules of ATP are used in					
	carbon fixation. The overall reaction of Calvin					
	cycle represents as					
	$6RuBP + 6CO_2 + 18ATP + 12NADPH \rightarrow$					
	$6RuBP + C_6H_{12}O_6 + 18ADP + 18P + 12NADP^+$					
405						
	Stroma side of membrane					
406						
	Cyclic Photophosphory	ylation involves only PS-I				
	and in this electron expelled by excited					
	photocentre is returned to it after passing over a					
	chain of electron carriers. Two molecules of ATP					
	are synthesized in this process.					
407	(a)					
	The site for photorespiration is chloroplast.					
	Peroxisome and mitochondria are required for					
	completion of the process. It is a cyclic process.					
	Glycolate is formed in chloroplast, which usually					
	passes into peroxisome of the mesophyll cell					
	where it is oxidised to glyoxylate. Glyoxylate is					
	aminated and gives rise to amino acid glycine that					
	enters to mitochondrion.					
408						
	For the ease of understanding Calvin cycle can be					
	described under three stages					
	(i) Carboxylation is the fixation of CO_2 into stable					
	organic intermediate					
	(ii) Reduction is a series of reactions that lead to					
	the formation of glucose					
	(iii) Regeneration of CO_2 acceptor molecule, RuBP					
100	is main, part of this stage					
409		th photogratom Lic				
	In 780 nm of wavelength, photosystem-I is inactive. In photo system-I, the photocentre is					
	special chlorophyll-a molecule called P ₇₀₀ .					
410						
110						
	Bacterial photosynthesis involves only photosystem-I(PS-I) and cyclic					
	photophosphorylation. It is not connected with					
	photolysis of water, therefore, oxygen is not					
	photorysis of water, therefore, oxygen is not					

evolved. This synthesizes only ATP.

411 **(b)**

In C₄-plants, fixation of carbon dioxide occurs in mesophyll cells. The primary acceptor of carbon dioxide is phosphoenol pyruvate (PEP). It combines with carbon dioxide in the presence of PEP carboxylase to form oxaloacetate or oxaloacetic acid (OAA).

412 (d)

In photosystem-I, the primary electron acceptor is 420 (b) probably a Fe-S protein. The reduced primary acceptor transfers the electrons to secondary electrons acceptor (most probably ferradoxin).

413 **(b)**

Reduction These are series of reactions that lead to the formation of glucose. The steps involved are: utilisation of 2 molecules of ATP for phosphorylation and two molecules of NADPH for the reduction per CO_2 molecule fixed. The fixation of six molecules of CO_2 , 6 turns of the cycle the required for the removal of one molecule of glucose from the pathway

414 (c)

A-Released, B-Lumen, C-ATPase

415 (b)

Photosynthesis and respiration are similar because both organelles make ATP and are explained by chemiosmotic theory. During the formation or ATP, both organelle uses Electrons Transport Channels (ETC)

416 (d)

Cyclic Photophosphorylation in performed by PS-I only. It involves a cyclic electron flow, in which the photoexcited electrons from PS-I are occasionally shunted back to chlorophyll via the electron transport chain. This cyclic electron flow supplements the supply of ATP but produces no NADPH. Non-cyclic Photophosphorylation involves both PS-I and PS-II. Splitting of water, release of oxygen and production of NADPH takes place during it.

417 (c)

Quantum yield of photosynthesis is carbohydrate or dry mass, formed by plant by using carbon dioxide from air. It is about 12% in C₃ –plants.

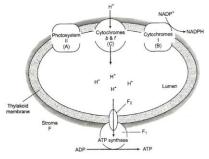
419 (a)

The primary CO₂ fixation product in C₄cycle is oxaloacetic acid (OAA) in the mesophyll cells. It then from the other 4-carbon compounds like

malic acid or aspartic acid in the mesophyll cells itself, which are transported to the bundle sheath cells.

ATP synthesised by chloroplast and mitochondria in the cell.

The electrons that were moved from photosystem II must be replaced. This is achieved by electrons available due to splitting of water. The splitting of water is associated with the PS-II. Water is split into H⁺, O and electrons. This creates oxygen, one of the net products of photosynthesis. The electrons that are needed to replace those removed from photosystem-I are provided by photosystem-II


 $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$

421 (b)

In C₄-plants, initial fixation of CO₂ occurs in mesophyll cells. The primary acceptor of CO₂ is phosphoenol pyruvate (PEP). CO₂Is again fixed inside bundle sheath cells through Calvin cycle. The pyruvate is sent back to mesophyll cells where it is changed to phosphoenol pyruvate (PEP).

422 (d)

Proton gradient develops inside the lumen, due to the accumulation of protons by the transportation of electrons through electron transport system. This leads to the formation of ATP by ATPase complex

423 (a)

3-phosphoglyceric acid (3-PGA) is the first stable product of Calvin-Bensen cycle or C₃-cycle or carbon-reduction cycle.