NEET BIOLOGY

RESPIRATION IN PLANTS

1.	In the electron transport sy	ystem present in the inner	r mitochondrial membrane	, complexes I and IV are	
	respectively				
	b) NADH and NADH Dehy	IIU FADIT ₂			
	c) NADH Dehydrogenase a	ulugellase nd cutochrome-c ovidase	complex		
	d) NADH debydrogenase ar	nd ATP synthase	complex		
2	In respiration incomplete of	nu ATT synthase	ne under		
2.	a) Aerobic respiration	Dridation of glucose is doi	h) Anaerohic respiration		
	c) Both (a) and (b)		d) None of these		
3	The cellular respiration first	st takes place in the	aj none or these		
0.	a) Cytonlasm	h) Golgi hodies	c) ER	d) Lysosomes	
4	Which of the following scie	entist has given the schem	e of glycolysis?	uj hysosonies	
	a) Gustav Embden <i>et. al</i>	h) Kreb <i>et. al</i>	c) Fritz Lipmann <i>et. al</i>	d) None of these	
5.	Which metabolic pathway i	is a common pathway to h	ooth anaerobic and aerobic	metabolism?	
	a) Glycolysis	b) EMP pathway	c) Both (a) and (b)	d) None of the above	
6.	In mitochondria, enzyme cy	ytochrome oxidase is pres	sent in	,	
	a) Outer membrane	1	b) Perimitochondrial space	ce	
	c) Inner membrane		d) Matrix		
7.	TCA cycle enzymes are pres	sent in	-		
	a) Cytoplasm		b) Inter membrane space	of mitochondria	
	c) Mitochondrial matrix		d) Inner membrane of mi	tochondria	
8.	Among the following, ident	tify the substrate required	l for the only oxidative read	tion that occurs in the	
	process of glycolysis.				
	a) 3-phosphoglyceric acid				
	b) Glyceraldehyde 3-phosp	hate			
	c) Fructose-6-phosphate				
	d) Glucose-6-phosphate				
9.	Aerobic respiration is				
	a) The process in which con	mplete oxidation of organ	ic substances in the absend	ce of oxygen	
	b) The process in which con	mplete oxidation of organ	ic substances in the preser	ice of oxygen	
	c) The process in which inc	complete oxidation of org	anic substances in the abse	nce of oxygen	
	d) The process in which inc	complete oxidation of org	anic substances in the pres	ence of oxygen	
10.	What will happen, when glu	ucose is administered ora	lly?		
	a) Excretion	b) Digestion	c) Circulation	d) Respiration	
11.	How many ATP molecules	could maximally be gener	ated from one molecule of	glucose, if the complete	
	oxidation of one mole of glu	ucose to carbon dioxide a	nd water yields 686 kcal an	id the useful chemical	
	energy available in the high	n energy phosphate bond	ot one mole of ATP is 12 kc	al?	
10	aj Two	b) Thirty	c) Fifty seven	aj Une	
12.	in photosynthesis, NADPH ₂	2 IS formed but in respira	tion it forms during		
10	a) HMP	UJEIS	CJ Kreds Cycle	uj None of these	
13.	Plants does not need specia	ansed respiratory organ b	ecause		

	a) Each plant part takes care of its own gas exchang	e b) Plants do not need gre	at demands for gas
	needs	exchange	
	c) Both (a) and (b)	d) None of the above	
14.	Lactic acid is formed in		
	a) Fermentation b) Glycolysis	c) HMP pathways	d) None of these
15.	In which part of mitochondria does ATP synthesis o	ccur?	-
	a) F ₁	b) F _o	
	c) Cristae	d) Inner membrane of mi	itochondria
16.	In oxidative decarboxylation, enzyme used to	,	
	a) Pyruvate decarboxylase	b) Pyruvate dehydrogena	ase
	c) Pyruvate hydrogeneticase	d) Pyruvate dehydrogene	eticase
17.	Select the wrong statement.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	a) When tripalmitin is used as a substrate in respira	tion, the RO is 0.7	
	b) The intermediate compound which links glycolys	is with Krebs' cycle is mali	c acid
	c) One glucose molecule vields a net gain of 36 ATP	molecules during aerobic	fermentation
	d) One glucose molecule yields a net gain of 2 ATP n	nolecules during fermentat	ion
18	Enzymes found attached to inner membrane of mito	chondria instead of matrix	ris/are
10.	a) Succinic Debydrogenase	h) Cytochrome oxidase	
	c) Both (a) and (b)	d) Malic Dehydrogenase	
10	Four respiratory enzymes are given below Arrange	them in increasing order of	f the carbon number of the
17.	substrates on which they act	them in mereasing or der o	
	L Englase		
	I. Aconitaço		
	II. Fumaraça		
	III. Fullial ase		
	a) II W III I b) W I II III		
20	$\begin{array}{c} a \\ b \\ c \\ c$	CJ 1, IV, III, II	uj IV, I, III, II
20.	Link enzyme in central respiration is	h) Drugurata Dahudua gan	
	a) Las situata Dabadua anna an	d) Succincul this lair and	ase
24	C) isocitrate Denyurogenase	d) Succinyi unokinase	
21.	Beer and butter milk are products of fermentation t	ly le) Coordobe store to serie one	
	a) Rhizopus stoionifer	b) <i>Caedobacter taeniospi</i>	
22	c) Bachius subtilis	a) <i>Saccharomyces cerevi</i>	SIAE
ΖΖ.	Apparatus to measure rate of respiration and respir	atory quotient is	
22	a) Auxanometer b) Potometer	c) Respirometer	d) Manometer
23.	Acetyl Lo-A binds to oxaloacetic acid to form		
	a) Formaldenyde b) Citrate	c) Acetate	d) Isocitrate
24.	In fermentation NADH is oxidised to NAD' in rat	ie Nu l	
~ =	a) Fast b) Slow	c) Usual	d) None of these
25.	Last electron acceptor in respiration is		D.MADM
	a) Oxygen b) Hydrogen	c) Carbon dioxide	d) NADH
26.	In animal cells, like muscle, during exercise when O	$_2$ is inadequate for cellular	respiration, pyruvic acid is
	reduced into lactic acid by		
	a) 0 ₂	b) Carboxylation	
	c) Lactate dehydrogenase	d) None of the above	
27.	Glucose break down takes place in fermentation		
	a) Partially	b) Completely	
	c) According to substrate	d) None of these	
28.	Plants need one of the following for ATP formation		
	a) N and P b) N and Cu	c) N and Ca	d) K
29.	First vitamin to be produced through fermentation	process using a wild bacter	ium was

	a) Vitamin-D b) Vitamin-C	c) Vitamin- B ₁₂	d) Vitamin-B ₂
30.	Fate of pyruvic acid during aerobic respiration is		
	a) Lactic acid fermentation	b) Alcoholic acid ferment	ation
	c) Oxidative decarboxylation	d) Oxidative phosphoryla	tion
31.	In respiration, respiratory substances can be used		
	a) Carbohydrate b) Protein	c) Organic acid	d) All of these
32.	In oxidative decarboxylation, only a carbon molecule	e of pyruvic acid is get oxid	ised, other two carbon
	molecule goes to form		
	a) Acetyl Co-A b) CO ₂	c) Citric acid	d) Both (a) and (b)
33.	Enzymes of electron transport system are present in		
	a) Inner mitochondrial membrane	b) Matrix	
	c) Intermembranous space	d) Endoplasmic reticulun	1
34.	Fungi are dependent on dead and decaying matter for	or feeding, it is called	
	a) Saprophytes b) Halophytes	c) Xerophytes	d) Nanophytes
35.	Which of the following reaction does not take place i	n the cell organelle, that is	referred to as 'Power house
	of the cell'?		
	a) Glycine Decarboxylation	b) Glyceraldehyde 3-phos	sphate dehydrogenation
	c) Fumaric acid hydration	d) Cytochrome oxidation	
36.	Which of the following is true regarding glycolysis?		
	I. Takes place in cytosol		
	II. Produces no ATP		
	III. Has no connection with electron transport chain		
	IV. Reduces two molecules of NAD ⁺ for every glucose	e molecule processed	
	Choose the correct option		
	a) Only I b) I, II and III	c) I and II	d) None of these
37.	The reaction which is catalysed by a protein that is n	ot found in the matrix of m	nitochondria is
	a) Conversion of pyruvic acid to acetyl coenzyme-A	b) Oxidative Decarboxyla	tion of α -ketoglutaric acid
	c) Oxidation of Succinic acid	d) Cleavage of Succinyl co	benzyme-A
38.	All enzymes of TCA cycle are located in the mitochon	drial matrix except one, w	hich is located in inner
	mitochondrial membranes in eukaryotes and in cyto	sol in prokaryotes. This en	zyme is
	a) Lactate Dehydrogenase	b) Isocitrate Dehydrogen	ase
	c) Malate Dehydrogenase	d) Succinate Dehydrogen	ase
39.	Identify enzyme A in the given reaction of Kreb's cyc	le	
	$0AA + Acetyl Co - A + H_2O \xrightarrow{A} Citric acid + Co - A$		
	a) Oxaloacetate synthetase	h) Citrate synthetase	
	c) Aconitase	d) Dehvdrogenase	
40	The enzymes for TCA cycle are present in	aj Denjarogenace	
101	a) Plastids	h) Golgi complex	
	c) Mitochondria	d) Endonlasmic reticulun	ı
41	Which one of the following is the terminal electron a	ccentor?	•
11.	a) Molecular (Ω_{2}) b) Molecular Ω_{2}	c) Molecular H _a	d) NADPH
42	In electron transport system which of the following	acts as a final hydrogen act	centor
14.	a) Oxygen b) Hydrogen	c) Calcium	d) Ilhiquinone
43	If a starving plant is provided with glucose the rate	of respiration would	aj obiquinone
15.	a) First rise then fall h) Become constant	c) Decrease	d) Increase
44	Which one is product of aerobic respiration?	cj Decrease	aj mercuse
1 F .	a) Malic acid b) Ethyl alcohol	c) Lactic acid	d) Pyruvic acid
45	Given below the diagrammatic presentation of ATD c	vnthesis in mitochondria	Identify A-C and Choose the
IJ.	correct ontion accordingly		identity it c and choose the
	contect option accordingly		

	Outer		
	Side ATP		
	Inner ADP Pi		
	mitochondrial membrance Matrix		
	a) $A - H^+$, $B - F_1$, $C - F_0$	b) $A - 3H^+$, $B - F_0$, $C - F_1$	
	c) $A - 2H^+, B - F_0, C - F_1$	d) $A - 5H^+$, $B - F_1$, $C - F_0$)
46.	In Krebs' cycle,		
	a) ADP is converted into ATP		
	b) Pyruvic acid is converted into CO_2 and H_2O		
	c) Glucose is converted into CO_2		
	d) Pyruvic acid is converted into ATP		
47.	Decline in the activity of the enzyme Hexokinase by	glucose-6-phosphate is cau	sed by
	a) Non-competitive		
	b) Competitive inhibitors		
	d) Denaturation of enzyme		
48	In which of the following reactions of glycolysis ovic	lation takes place?	
10.	a) Glucose 6-PO ₄ to fructose 6-PO ₄	action takes place.	
	b) Glyceraldehydes 3-phosphate to 1, 3-diphosphogl	vcerate	
	c) 1,3-diphosphoglycerate to 3-phosphoglycerate	y	
	d) 2-phosphoglycerate to phosphoglycerate		
49.	During conversion of pyruvic acid into acetyl Co-A, p	yruvic acid is	
	a) Oxidized b) Reduced	c) Isomerized	d) Condensed
50.	During anaerobic respiration in yeast		
	a) H_2O and CO_2 are end-products		
	b) CO_2 , ethanol and energy are end-products		
	c) CO_2 , and H_2O are end-products		
۲1	d) UO_2 , acetic acid and energy are end-products		
51.	All living organisms need A for carrying out daily	g to NCERT text book.	od by P of
	macromolecules	The activities and is obtain	eu byb 01
	a) A-oxygen: B-reduction	b) A-energy: B-reduction	
	c) A-energy; B-oxidation	d) A-oxygen; B-oxidation	
52.	Most of the biological energy is supplied by mitocho	ndria through	
	a) Breaking of proteins	b) Reduction of NADP ⁺	
	c) Breaking of sugars	d) Oxidising TCA (tricarbo	oxylic acid) substrate
53.	Chemiosmotic mechanism of ATP production in aero	bic respiration was given b	у
	a) Krebs b) Calvin	c) Hatch and Slack	d) Peter Mitchell
54.	Choose the correct combination of labeling the mole	cules involved in the pathw	vay of anaerobic respiration
	in yeast		

	Glycolysis) Fermentation		
	Glucose		
	Exercise 1		
	Glyceraldehyde-3-P		
	ADP NAD+ TAN		
	ATP NADH		
	1,3 bisphos-		
	phoglycerate Pyruvate ((C)		
	a) A – Ethanol, B – CO2 , C – Acetaldehyde		
	b) A - CO2 , B – Ethanol, C- Acetaldehyde		
	c) A - CO2, B - Acetaldehyde, C- Ethanol		
	d) A – Ethanol, B - Acetaldehyde, C - CO2		
55.	Which of the metabolites is common to respiration	mediated breakdown of fat	s, carbohydrates and
	proteins?		
	a) Glucose-6-phosphate	b) Fructose, 6-bisphosph	ate
	c) Pyruvic acid	d) Acetyl Co-A	
56.	In succulent plants like Opuntia, the RQ value will b	e	
	a) Less than one b) More than one	c) Infinite	d) Zero
57.	The pyruvic acid formed during glycolysis is oxidize	ed to CO_2 and H_2O in a cycle	called
	a) Calvin cycle b) Nitrogen cycle	c) Hill reaction	d) Krebs' cycle
58.	Respiratory enzymes are present in the following of	rganelle	
	a) Peroxisome b) Chloroplast	c) Mitochondrion	d) Lysosome
59.	An ATP molecule is structurally most similar to a m	olecule of	
	a) RNA nucleotide b) DNA nucleotide	c) Amino acid	d) Fatty acid
60.	Read the following and choose the option containin	g correct pair	
	I. DCMU Herbicide Inhibitor of non-cyclic electron t	ransport	
	II. PMA Fungicide Reduce transpiration		
	III. Colchicine Alkaloid Causes male sterility		
	IV. Soilrite Sodium alginate Encapsulation of somati	c embryos	
64	a) I and II b) I and III	c) II and III	d) II and IV
61.	Uxidation of one molecule of NADH gives rise to		
()	a) 3 ATP molecules b) 12 ATP molecules	c) 2 ATP molecules	d) IATP molecule
62.	Aerobic respiratory pathway is appropriately terme	ed as	
()	a) Catabolic b) Parabolic	c) Amphibolic	d) Anabolic
63.	In alconol termentation,		
	a) There is no electron accentor		
	c) Triese phosphate is the electron dopor while and	taldahuda is tha alastron a	contor
	d) Triese phosphate is the electron donor, while act	ruvic acid is the electron ac	contor
64	In respiration breaking down of glucose with oxyge	n is known as	leptor
04.	a) Ovidation process	h) Reduction process	
	c) Ovidation-ovaloacitation process	d) All of the above	
65	Net gain of ATP molecules per hexose during aerobi	ic respiration is	
05.	a) 12 b) 18	c) 36	d) 30
66.	Which of these are respiratory poisons or inhibitory	s of electron transport chair	1?
50.	a) Cvanides b) Antimycin-A	c) Carbon monoxide	d) All of these
67.	Kreb's cycle is completed with the formation of	-,	
.	a) Citric acid	b) Oxaloacetic acid (OAA))
	c) Succinic acid	d) Malic acid	
	•	,	

68.	Where is ATP synthesised a) When 1, 3 di PGA is cha b) When glucose is conve	l in glycolysis? anged into 3PGA rted into glucose-6-phosph	ate	
	c) Both (a) and (b)	0 1 1		
	d) When, 1, 6 diphosphat	e is broken in triose phosp	hate	
69.	Maximum number of ATF	'is obtained from		
70	a) Glucose	b) Palmitic acid	c) Malic acid	d) β -amino acid
70.	Glycolysis takes place in		h) Eulermette celle culu	
	a) All living cells		d) None of these	
71	Krahs' cycle begins with t	he reaction	uj Nolle ol ulese	
/1.	a) Citric acid +acetyl Co-	Δ	b) Oxaloacetic acid $+$ pyr	uvicacid
	c) $Oxaloacetic acid + citr$	ic acid	d) Oxaloacetic acid $+$ pyr	tvl Co-A
72.	Co-Factor required for for	rmation of acetyl Co-A is		
, =:	a) TPP	b) Lipoic acid	c) Mg ²⁺ , Co-A	d) All of these
73.	In anaerobic respiration i	n plants		.,
	a) Oxygen is absorbed	1	b) Oxygen in released	
	c) Carbon dioxide is relea	ised	d) Carbon dioxide is abso	rbed
74.	The respiratory quotient	(RQ) of some of the compo	unds are 4,1 and 0.7. These	e compounds are identified
	respectively as			
	a) Malic acid, palmitic aci	d and tripalmitin	b) Oxalic acid, carbohydra	ate and tripalmitin
	c) Tripalmitin, malic acid	and carbohydrate	d) Palmitic acid, carbohyd	lrate and oxalic acid
75.	The enzyme is used to	catalysed when condensat	ion of acetyl group with ox	aloacetic acid and to yield
	citric acid			
	a) Citrate permeate	b) citrate synthase	c) Citrate burate	d) Citrate maliate
76.	The respiratory quotient	(RQ) of a germinating cast	or seed is	
77	a) Equal to one	b) Greater than one	c) Less than one	d) Equal to zero
//.	GIYCOIYSIS	of aluciona (ana malagula)	to form 2 malagulas of nur	wig agid and 2 ATD ag not
	n. causes par uar oxidation	of glucose (one molecule)	to form 2-molecules of pyr	uvic aciu aliu 2 ATP as liet
	II takes place in all living	cells		
	III. uses 2 ATP at two ster)S		
	IV. scheme was given by (Gustav Embden, Otto Mave	rhof and I Parnas	
	Choose the correct option	o containing appropriate st	atements from the above	
	a) I, II and III	b) I, II and IV	c) I, II, III and IV	d) Only I
78.	During oxidative phospho	orylation, the net gain of AT	'P is	
	a) 40	b) 38	c) 34	d) 30
79.	Decarboxylation is involv	ed in		
	a) Electron transport syst	tem		
	b) Glycolysis			
	c) Krebs' cycle			
0.0	d) Lactic acid fermentatio	on L		
80.	Alternate name of TCA cy	cle is	a) Marrada aff arrada	d) Eachdan anala
01	a) Kreb's cycle	DJ Grad S cycle	c) Mayernon cycle	a) Empleen cycle
01.	molecules does he requir	e to produce this much and	rov?	r molecules and glucose
	a) 20 molecules of alucos	e and 384 molecules of ΔT	тау. D	
	b) 40 molecules of plucos	e and 264 molecules of AT	, p	
	c) 18 molecules of glucos	e and 657 molecules of AT	P	
	d) 20 molecules of glucos	e and 460 molecules of AT	P	
	5			

82.	Which one of the followi a) Methanogens – Gobar	ng pairs is wrongly matche gas	d? b) Yeast – Ethanol	
	c) Streptomycetes – Anti	biotic	d) Coliforms – Vinegar	
83.	In hurdle race, which of t	the following is accumulate	d in the leg muscle?	
	a) Performed ATP	b) Glycolysis	c) Lactate	d) Oxidative metabolism
84.	During the exercise, pyru	ivic acid is reduced to		
	a) Lactic acid	b) Fumaric acid	c) Glutamic acid	d) Oxaloacetic acid
85.	The compounds which a	re oxidised during respirat	ion are known as	
	a) Respiratory substrate	S	b) Oxalo acid	
	c) TCA cycle		d) None of these	
86.	Refer the given equation			
	$2(C_{51}H_{98}O_6) + 145O_2 -$	$\rightarrow 102 \text{ CO}_2 + 98 \text{ H}_2 \text{O} + \text{Ener}$	rgy	
	The respiratory quotient	in this case is		
	a) 1	b) 0.7	c) 1.45	d) 1.62
87.	Energy required for life	processes is obtained by		
	a) Oxidation	b) Reduction	c) Deduction	d) Antilation
88.	Choose the correct state	ment for the given options		
	a) Intermediates in the p	athway are utilised to synt	hesise other compounds	
	b) No alternative substra	ites other than glucose is al	llowed to enter the pathway	at intermediate stages
	c) None of the substrate	is respired in the pathway	at intermediary stages	
00	d) Pathway functioning i	s insequential		
89.	In plants, glucose is deriv	ved from which of the follo	wing?	d) C.,
00	a) Protein	DJ Fat	c) Uxallc acid	a) Sucrose
90.	triphosphate (ATP) is for	rmed because	phosphorylation proposes	that adenosine
	a) High energy bonds are	e formed in mitochondrial	b) ADP is pumped out of	the matrix into the
	proteins		intermembrane space	
	c) A proton gradient form	ns across the inner	d) There is a change in th	e permeability of the inner
	membrane		dinhoonhoto (ADD)	ane towards adenosine
01	The process by which the	are is inhibition of parabics	uppiosphate (ADP)	ovygon is
<i>9</i> 1.	a) Pastour's offect	b) Calvin's effect	c) Darwin's effect	d) None of these
92	More carbon dioxide is e	volved than the volume of	ovvgen consumed when the	respiratory substrate is
12.	a) Fat	b) Sucrose	c) Glucose	d) Organic acid
93.	Anaerobic respiration is	also called as	ej diacose	a) organic acta
201	a) <i>B</i> -oxidation	b) Fermentation	c) Oxidation	d) None of these
94.	The main purpose of cell	ular respiration is to	.,	,
	a) Convert potential ener	rgy to kinetic energy		
	b) Convert kinetic energy	y to potential energy		
	c) Create energy in the c	ell		
	d) Convert energy stored	l in the chemical bonds of g	lucose to an energy that the	e cell can use
95.	Which of the following su	ubstances yield less than 4	kcal/mol when its phospha	te bond is hydrolysed?
	a) Creatine phosphate	b) ADP	c) Glucose-6-phosphate	d) ATP
96.	Five gram mole of glucos	e on complete oxidation re	leases	
	a) 3430 kcal of energy	b) 343 kcal of energy	c) 2020 kcal of energy	d) 430 kcal of energy
97.	NADP, NAD and FAD are	acceptors of		
	a) Phosphate	b) Electrons	c) Oxygen	d) Hydrogen
98.	How many PGAL are pro	duced by glycolysis of 3 mo	olecules of glucose? How ma	any ATP are released by
	respiration of these PGA	L till formation of CO ₂ and I	H ₂ 0?	
	aj 4 PGAL- 80 ATP	DJ 6 PGAL-160ATP	CJ 4 PGAL-40ATP	aj 6 PGAL-120ATP

99. Identify the specific group, which carries out the following biochemical reaction: Aspartic acid+ α -ketoglutaric acid \rightarrow 0xaloacetic acid+Glutamic acid				
a) Synthetases b) Peptidases	c) Transaminases	d) Lyases		
100. Which of following is connecting link between glyc	olysis and Krebs' cycle?			
a) Pyruvic acid				
b) Isocitric acid				
c) Acetyl CO-A d) Phosphoglycoric acid				
101 Which one of the following reactions is an example	of ovidative Decarbovulati	on?		
a) Conversion of succinate to fumarate	b) Conversion of fumara	ate to malate		
c) Conversion of pyruvate to acetyl Co-A	d) Conversion of citrate	to isocitrate		
102. If O_2 is not present, yeast cells break down glucose	to			
a) $CO_2 + H_2O$ b) $CO_2 + Lactic acid$	c) $C_2H_5OH + H_2O$	d) C_2H_5OH and CO_2		
103. How many ATP is released respectively when NAD	H and FADH ₂ molecules ge	t oxidised?		
a) 3 ATP, 2 ATP b) 2 ATP, 3 ATP	c) 5 ATP, 4 ATP	d) 3 ATP, 5 ATP		
104. Release of energy by breaking down of C-C bond of	various organic molecules	by oxidation process for		
cellular use is known as				
a) Respiration	b) Photorespiration			
c) Oxidative phosphorylation	d) Combustion			
105. Krebs' cycle was discovered by Krebs in pigeon mu	iscles in 1940. Which step i	s called gateway step/link		
reaction/transition reaction in respiration?				
a) Glycolysis	b) Formation of acetyl C	lo-A		
c) Citric acid formation	d) ETS terminal oxidatio	on		
106. Correct sequence of electron acceptor of ATP synth	16SIS IS	d) and a large a		
a) cyt-a, a_3 , b, c b) cyt-b, c, a, a_3 107 The number of ATD produced when a molecule of f	CJ CYT-D, C , a ₃ , a	d) cyt-c, b, a, a_3		
a) 4 b) 36	c) 2	d) 38		
108 Oxidative decarboxylation is	0 2	u) 50		
a) Pyruvic acid is oxidised to carbon dioxide	b) Pyruvic acid is subsid	lised to oxygen		
c) Pyruvic acid is oxidised to oxygen	d) Pyruvic acid is subsid	lised to carbon dioxide		
109. An example of Pasteur's effect is	, , , , , , , , , , , , , , , , , , ,			
a) Penicillium b) Pinnularia	c) Saccharomyces	d) Nostoc		
110. Fermentation is				
a) Anaerobic respiration	b) Incomplete oxidation	of carbohydrate		
c) Complete oxidation of carbohydrate	d) None of the above			
111. Citric acid cycle is the alternate name of which of the	he following?			
a) HMP shunt b) Glycolysis	c) TCA cycle	d) Calvin cycle		
112. When one molecule of glucose is completely oxidiz	ed during aerobic respirati	on, how many molecules of		
carbon dioxide are released due to Tricarboxylic a	cid cycle?			
a) One b) Two	c) Three	d) Four		
a) Cyclic AMP	a) CMD	ፈን ለ፹፬		
114. The RO value of ovalic acid is	C) GMF	UJAIF		
a) 10 b) 0.7	c) 4	d) a		
115 Energy currency of cell is		uju		
a) Mitochondria b) Chloroplast	c) ATP	d) Glucose		
116. Break down process is also called	·)			
a) Catabolism b) Anabolism	c) Both (a) and (b)	d) All of these		
117. The energy-releasing metabolic process in which s	ubstrate is oxidized withou	it an external electron		
acceptor, is called				

a) glycolysis b) Fermentation	c) Aerobic respiration	d) Photorespiration
118. How many times ATP is utilised in glycolysis?		
a) 2 b) 3	c) 4	d) 5
119. Aerobic respiration takes place in		
a) Mitochondria b) Ribosome	c) Glogi body	d) Both (a) and (b)
120. Sequence of events in Kreb's cycle is	and the Constant of Malata	
Acetyl Lo-A \rightarrow Litrate \rightarrow Pyruvate \rightarrow Oxaloacetic a)	acid ← fumarate ← Malate <	\leftarrow Succinate α -
Ketogiutaraite	· Ovalaggatia goid (Malia	acid (Eumoria acid (
b) Succinic acid	\rightarrow 0xaloacetic actu \leftarrow Malic	aciu — Fulliaric aciu —
c) Acetyl Co-A \rightarrow Citric acid \rightarrow Malic acid Oxaloaceti	c ← Oxaloacetic acid Succin	ic $\leftarrow \alpha$ -ketoglutaric acid \leftarrow
d) All are wrong		
121. Which of the following is a 4-carbon compound?		
a) Oxaloacetic acid	b) Phosphoglyceric acid	
c) Ribulose bisphosphate	d) Phosphoenol pyruvate	<u>è</u>
122. An example of non-competitive inhibition is		
a) The inhibition of succinic Dehydrogenase by	b) Cyanide action on cyto	ochrome oxidase
Malonate		
c) Sulpha drug on folic acid synthesizing bacteria	d) The inhibition of Hexo	kinase by glucose 6-
	phosphate	
123. What is the net ATP molecules gain, when 4 molecu	les of glucose undergo anae	erobic respiration in plant?
a) 8 ATP b) 20 ATP	c) 144 ATP	d) 16 ATP
124. Chemiosmosis hypothesis given by Peter Mitchell p	roposes the mechanism of	
a) Synthesis of NADH b) Synthesis of ATP	c) Synthesis of FADH ₂	d) Synthesis of NADPH
125. Glycolysis		
a) Takes place in the mitochondria		
b) Produces no ATP		
c) has no connection with electron transport chain d) Poduce two molecules of NAD^+ for every gluces	moloculo processed	
126 Citric acid cycle is also known as	molecule processeu	
a) Tricarboxylic acid cycle	h) Ovidative decarboxyla	tion
c) Fermentation cycle	d) Both (a) and (b)	cion
127. Instantaneous source of energy is	uj botii (u) tiitu (b)	
a) Protein b) Lipid	c) Fats	d) Glucose
128. Before entering into the respiratory pathway fats by	reakdown into	·) · · · · · · · · · · · · · · · · · ·
a) Fatty acid and glycerol	b) Fatty acid and ascorbi	c acid
c) Fatty acid and ascorbic acid	d) Fatty acid and amino a	acid
129. In which of the following reactions of glycolysis, a m	olecule of water is remove	d from the substrate?
Fructose-6-phosphate \rightarrow Fructose-1, 6-	3-phosphate-glycerald	lehyde → 1, 3
bisphosphate	bisphosphoglyceric ac	id
c) PEP \rightarrow Pyruvic acid	d) 2- phosphoglycerate –	→ PEP
130. The reactions of Pentose Phosphate Pathway (PPP)	take place in	
a) Mitochondrion	b) Cytoplasm	
c) Chloroplast, peroxisome and mitochondrion	d) Chloroplast, glyoxysor	ne and mitochondrion
131. In citric acid cycle first step is		
a) Acetyl Co-A combines with oxalo acetic acid	b) Acetyl Co-A combines	with citric acid
C_{J} CHUTC actu combines with oxaloacetic actu	a) chiric acia combines w	aun manic acid
152. Fyruvate $\rightarrow U_2 \Pi_3 U \Pi + U U_2$ The above reaction people two engumes named as		
a) Pyrijyate decarboxylase and alcohol debydrogen	ase	
aj i yi uvate uccai boxylase anu alconol ucnyul ogeli	use	

	b) Pyruvate decarboxyla	se and enolase			
	c) Pyruvate decarboxyla	se and pyruvate kinase			
	d) Pyruvate carboxylase and aldolase				
133	. FAD is electron acceptor	during oxidation of which	of the following?		
	a) α -ketoglutarate \rightarrow Succ	inyl Co-A	b) Succinic acid \rightarrow Fuma	ric acid	
	c) Succinyl Co-A \rightarrow Succi	nic acid	d) Fumaric acid \rightarrow Malic	acid	
134	. Which of the following su	ubstrate can enter into the	respiration?		
	a) Glucose	b) Amino acid	c) Fatty acid	d) All of these	
135	. RQ value of 4 may be exp	ected for the complete oxi	dation of which one of the	following?	
	a) Glucose	b) Malic acid	c) Oxalic	d) Tartaric acid	
136	. When act as a respirator	y substrate, which of the fo	ollowing would be broken d	lown to acetyl Co-A?	
	a) Fatty acid	b) Protein	c) Carbohydrate	d) All of these	
137	. Anaerobic respiration ge	nerally occurs in			
	a) Lower organism, <i>e.g.</i> , l	pacteria and fungi	b) Higher organism, <i>e.g.,</i>	animal	
	c) Both (a) and (b)		d) None of the above		
138	. In which of the following	, reduction of NAD does no	ot occur?		
	a) Isocitric acid $\rightarrow \alpha$ -keto	glutaric acid			
	b) Malic acid →0xaloacet	tic acid			
	c) Pyruvic acid \rightarrow Acetyl o	coenzyme			
	d) Succinic acid →Fumar	ic acid			
139	. How many NADH + H^+ n	nolecule is released in Kre	b's cycle?		
	a) 3	b) 6	c) 12	d) 14	
140	. Cell respiration is carried	l out by			
	a) Ribosome	b) Mitochondria	c) Chloroplast	d) Golgi bodies	
141	. The released energy obta	nined by oxidation is stored	d as		
	a) A concentration gradie	ent across a membrane	b) ADP		
	c) ATP		d) NAD ⁺		
142	. Respiratory Quotient (RO	is one in case of			
	a) Fatty acids	b) Nucleic acids	c) Carbohydrates	d) Organic acids	
143	. Which of the following su	ibstrates is used in the form	mation of alcohol?		
	a) Sucrose	b) Glucose	c) Galactose	d) Fructose	
144	. Which one is correct seq	uence in glycolysis?			
	a) G-6-P \rightarrow PEP \rightarrow 3-PGAL	\rightarrow 3-PGA	b) G-6-P→3-PGAL → 3-P	$GA \rightarrow PEP$	
	c) G-6-P \rightarrow PEP \rightarrow 3-PGA -	→ 3-PGAL	d) G-6-P→3-PGA →3-PG	$AL \rightarrow PEP$	
145	. Cyanide resistant pathwa	ay is			
	a) Anaerobic respiration		b) Aerobic respiration		
	c) Both (a) and (b)		d) None of these		
146	. Common enzyme in glyco	olysis and pentose phosph	ate pathway is		
	a) Hexokinase	b) aconitase	c) Fumarase	d) Dehydrogenase	
147	. In aerobic respiration co	mplete oxidation of pyruva	ate by the stepwise remova	l of all the hydrogen atom	
	makes molecule of (20_{2}			
	a) 2	b) 3	c) 4	d) 5	
148	. Phase common in aerobi	c and anaerobic respiration	n is		
	a) TCA cycle	b) Glycolysis	c) Glycogenolysis	d) ETS	
149	. 2NADH(H ⁺) produced di	uring anaerobic glycolysis	yield		
	a) 6 ATP molecules	b) 4 ATP molecules	c) 8 ATP molecules	d) None of these	
150	. In the production of etha	nol, pyruvic acid is first co	nverted to acetaldehyde by	the enzyme.	
	a) Alcohol Dehydrogenas	se	b) Alcohol oxidase		
	c) Pyruvate Dehydrogen	ase	d) Pyruvate decarboxyla	se	
151	. The activity of succinate	Dehydrogenase is inhibite	d by		

a) Pyruvate	b) Gly	colate	c) Melonate	d) Phosphoglycerate
152. Citric acid is industrially best produced by				
a) Streptococcus lactis			b) Aspergillus niger	_
c) Penicillium pu	rpurogenum		d) Lactobacillus delbre	ukii
153. Respiratory subs	trate are the or	ganic substance w	hich are during respira	tion to liberate energy
a) Oxidised	b) Re	luced	c) Both (a) and (b)	d) Synthesised
ر 154. The oxidation of ا	oyruvic acid to	CO_2 and H_2O is cal	lled	
a) Fermentation			b) Citric acid cycle	
c) Glycolysis			d) Oxidative phosphory	ylation
155. Preparatory phas	e before ferme	ntation is		
a) Upstream proc	cess b) Do	wnstream process	c) Inoculation	d) Filtration
156. For retting of jute	e the fermenting	g microbe used is		
a) <i>Helicobactor p</i>	ylori		b) <i>Methophilic bacteria</i>	2
c) Streptococcus	lactis		d) <i>Butyric acid bacteria</i>	9
157. The respiratory q	uotient during	cellular respiratio	n would depend on the	
a) Nature of enzy	mes involved		b) Nature of the substr	ate
c) Amount of car	bon dioxide rele	eased	d) Amount of oxygen u	tilized
158. Which one of follo	owing is comple	ex V of the ETS of i	nner mitochondrial memb	orane?
a) NADH Dehydro	ogenase		b) Cytochrome oxidase	!
c) Ubiquinone			d) ATP synthase	
159. Protein directly c	annot be used a	s a respiratory su	bstrate, it breaks down int	to
a) Amino acid	b) Fat	ty acid	c) Glycolytic acid	d) Fumaric acid
160. Ethyl alcohol is co	ommercially ma	nufactured from		,
a) Baira	b) Gra	pes	c) Maize	d) Sugarcane
161. Biological oxidati	on in Krebs' cv	le involves	,	, ,
a) 0_{2}	b) CO	2	c) 0 ₂	d) NO2
162. Last electron acce	eptor during ET	S is	-) - 3	-) -2
a) 0_2	h) cvt	-a	c) cvt-a	d) cvt-a ₂
163. Which enzyme co	nverts glucose	into alcohol?		
a) Zymase	h) Dia	stase	c) Invertase	d) Linase
164. Glycolysis is a pai	t of		ej mvertube	
a) Anaerohic rest	niration only		h) Aerobic respiration	only
c) Both (a) and (n)		d) Krehs' cycle	omy
165 When trinalmitin	is used as a sul	ostrate in respirati	ion the RO is	
a) >1	h) 1 0	Struce in respirat		d) 0 7
166 Read the followin	g table and cho	ose the correct na	ir	aj on
V. DCMU	Herbicide	Inhibitor of nor	-cvclic electron transport	
VI PMA	Fungicide	Reduce transni	ration	
VII Colchicine	Alkaloid	Causes males	sterility	
VIII Soilrite	Sodium	lginate Encansul	ation of somatic embryos	
	b) L II	iginate Encapsul I		d) II IV
aj 1, 11 167 In perohic respire	ution removal 3	molecules of CO	cj II, III	uj 11, 1V
a) Matrix of the m	nitochondria		b) Inner membrane of	the mitochondria
c) Both (a) and (l			d) Anywhere in the mit	achondria
169 In anarchic rosn	iration bactoric	produco	u) Anywhere in the line	lochonuna
a) Lactic acid	h) Eq	micacid	c) Acotic acid	d) Clutamic acid
aj Lacue aciu 160 During ita format	UJ FOI	mac norous due to	cj Acetic aciu a roloaco of Carbon diorida	a by the action of
a) Vocat	וטוו, טו eau deco - ת גא	mes porous que to	a) Virus	d) Drotozoorz
aj reast 170 Roforo ontoninam	UJ Ba	utild	CJ VILUS	uj riolozoalis
1/U. DEIUIE EIILEIIIIg I	d by the spiratory path	way ammu actus a trolwood	alt a) Deaminated	d) Dhoonhowdated
a) Decarboxylate	u DJHy	urorysed	c) Deaminated	aj Phosphorylated

171. The intermediate compound common for aerobic an	d anaerobic respiration is	
a) Citric acid b) Pyruvic acid	c) Acetyl Co-A	d) Succinic acid
172. How many ATP molecules are obtained from fermer	itation of 1 molecule of gluc	cose?
a) 2 b) 4	c) 3	d) 5
173. During which stage in the complete oxidation of glue from ADP?	cose are the greatest numbe	er of ATP molecules formed
a) Conversion of pyruvic acid to acetyl Co-A	b) Electron transport chai	in
c) Glycolysis	d) Krebs' cycle	
174. In plants the cells in the interior parts are		
a) Dead and for mechanical support	b) Live and for various pu	rpose
c) Both (a) and (b)	d) None of the above	
175. Ultimate source of energy in biosphere, is		
a) Sunlight b) Protein	c) Fats	d) Enzymes
176. Dough kept overnight in warm weather becomes so	ft and spongy because of	
a) Absorption of carbon dioxide from atmosphere	b) Fermentation	
c) Cohesion	d) Osmosis	
177. The respiratory quotient (RQ) or respiratory ratio is	5	
2 RO = Volume of O ₂ evolved	b) $RO_{2} = \frac{Volume of O_{2} contracts}{Volume of O_{2} contracts}$	nsumed
Volume of CO_2 consumed	Volume of CO_2 e	evolved
c) BO = $\frac{\text{Volume of CO}_2 \text{ consumed}}{\text{Volume of CO}_2 \text{ consumed}}$	d) R0 = Volume of C0 ₂ ϵ	evolved
Volume of O_2 evolved	Volume of O_2 column volume of O_2 column volumn volu	nsumed
178. Maximum amount of energy/ATP is liberated on oxi	dation of	
a) Fats b) Proteins	c) Starch	d) Vitamins
$179. \text{ NADH}_2 \rightarrow \text{FAD} \rightarrow \text{FADH}_2$		
The given reaction occurs in		
a) Heart cells b) Kidney cells	c) Liver cells	d) Nerve cells
180. Net yield of ATP molecules in aerobic respiration du	ring Krebs' cycle per glucos	se molecule is
a) 2 ATP molecules	b) 8 ATP molecules	
c) 36 ATP molecules	d) 38 ATP molecules	
181. Respiratory quotient can very due to		
a) Temperature	b) Respiratory substrate	
c) Light and oxygen	d) Respiratory product	
182. In anaerobic respiration the correct sequence of cata	abolism of glucose is	
a) Glycolysis, TCA cycle, oxidative phosphorylation		
b) Glycolysis, fermentation		
c) Glycolysis, oxidative phosphorylation, TCA cycle		
d) Oxidative phosphorylation, TCA cycle, glycolysis		
183. In eukaryotes, photosynthesis occurs in		
a) Chloroplast b) Stomatal opening	c) Bark	d) Roots
184. In yeast during anaerobic respiration, how many glu molecules?	cose molecules are require	d for production of 38 ATP
a) 1 b) 2	c) 19	d) 38
185. Which of the following is involved in the catalysis of respiration?	link reaction during aerobi	c during aerobic
a) Vitamin- A b) Vitamin- B_4	c) Vitamin- Bc	d) Vitamin- K
186 Respiratory quotient in anaerobic respiration is		
a) 0.7 b) 0.9	c) Unity	d) Infinity
187. Choose the correct combination of A and B in accord	ance with the NCERT text h	ook.
The NADH synthesised inA is transferred into th	e mitochondria and underg	goes oxidativeB
aj n Lini, D cai boxylation	oj n Ero, o-phosphorylat	1011

c) A-glycolysis; B-phosphorylation	d) A-TCA cycle; B-decarbo	oxylation
188. Total gain of ATP molecules during aerobic respirati	on of one molecule of gluco	ose
a) 36 b) 38	c) 40	d) 34
189. Which of the following enzyme is responsible for for	mation of glucose from glu	cose-6-phosphate?
a) Kinase b) Aldolase	c) Dehydrogenase	d) Phosphatase
190. Alcoholic fermentation takes place in the presence o	f	
a) Maltase b) Zymase	c) Amylase	d) Invertase
191. Which of these steps in Krebs' cycle indicates substr	ate level phosphorylation?	
a) Conversion of succinyl acid to \propto -ketoglutaric acid		
b) Conversion of succinic acid to malic acid		
c) Conversion of succinyl Co-A to succinic acid		
d) Conversion of malic acid to oxalo acetic acid		
192. Identify A and B in the given reaction		
Pyruvic acid		
+Co-A +NAD ⁺ $\xrightarrow{Mg^{-1}}$ A + B + NADH	$(+ H^+)$	
a) A-PEP: B-CO ₂	b) A-Acetyl Co-A: B-CO ₂	
c) $A-CO_2$: $B-H_2O_2$	d) A-Acetyl Co-A: B-H ₂ O	
193. In which one of the following reactions, oxidative $Determines the following reaction of the following reactions of the fol$	ecarboxylation does not occ	cur?
a) Malic acid \rightarrow Pyruvic acid	b) Pyruvic acid \rightarrow Acetyl (Co-A
Glyceraldehyde 3-phosphate $\rightarrow 1.3$ -		
c) bisphosphoglycolysis acid	d) α -ketoglutaric acid \rightarrow	Succinyl Co-A
194. Anaerobic respiration can occur		
a) Lower organism	b) Higher plants and anin	nals
c) Both (a) and (b)	d) None of the above	
195. The three boxes in this diagram represent the three	major biosynthetic pathwa	ys in aerobic respiration.
Arrows represent net reactants or products		
$\overrightarrow{}^{1}_{2} \xrightarrow{2}_{1} \overrightarrow{}^{6}_{1}$		
Glucase A B C A B C A A B C A A A B C A A A A B C A		
The numbered 2, 2, 6 can all be		
a) NADH b) ATP	c) H ₂ 0	d) FAD ² or FADH ₂
196. The main purpose of electron transport chain is to		
a) Cycle NADH + H^+ back to NAD ⁺	b) Use the intermediate fi	com TCA cycle
c) Breakdown pyruvic acid	d) All of the above	
197. How many ATP are formed during the citric acid cyc	le?	
a) 12 b) 24	c) 32	d) 35
198. RQ is always less than one in		
a) Wheat b) Millets	c) Bean	d) Castor
199. In glycolysis from glucose to pyruvic acid involves m	ore than seven reaction. Ea	ach individual reaction
needs		
a) One molecule of ATP	b) One molecule of ADP	
c) One molecule of NAD	d) One molecule of specif	ic enzyme
200. Which one is true for ATP?		
a) ATP is prosthetic part of an enzyme	b) ATP is an enzyme	
c) ATP is organic ions of enzyme		
	d) ATP is a coenzyme	
201. Oxidative phosphorylation refers to	d) ATP is a coenzyme	
201. Oxidative phosphorylation refers to a) Anaerobic production of ATP	d) ATP is a coenzymeb) The citric acid cycle problem in Alach 19 for the second sec	oduction of ATP
201. Oxidative phosphorylation refers toa) Anaerobic production of ATPc) Production of ATP by chemiosmosis	d) ATP is a coenzymeb) The citric acid cycle prod) Alcoholic fermentation	oduction of ATP

$ADP^- \Leftrightarrow$ Glucose-6-phosphate (6C)			
ATP			
$\begin{array}{c} \downarrow \\ C \end{array} Triose photometric constraints} Triose photometric constraints constrai$	osphate tone phosphate)		
$\begin{bmatrix} NAD^+ & (3) \\ NADH+H^+ \end{bmatrix}$	C)		
ATP			
2× Triose phosphate (3-phosphoglyceric)			
(30)			
2×2 phosphoglycerate			
H_2O 2 × 2 phosphoenolpyruvate			
2× Pyruvic acid (3C)			
a) A-Fructose-6-phosp	hate. B-Fructose-1. 6-bipl	hosphate, C-3-PGAL, D-1, 3-h	oiphosphoglyceric acid
b) A-Fructose-1, 6-bip	losphate, B-3-PGAL, C-1.	3-biphosphoglyceric acid. D-	3-PGA
c) A-3-PGA B-1 3-bin	iosphoglyceric acid C-3-F	PGAL D-Fructose-1 6-hinho	snhate
d) A-Fructose-1 6-bip	iosphogrycerie deid, e o r iosphate B-Fructose-6-hi	inhosphate C-3-PGAL D-1 3	-hinhosnhoglyceric acid
211 A scientist added a che	mical (cyanide) to an ani	mal cell to stop aerobic respi	iration Which of the following
is most likely to have h	an affected by this treat	mont?	mation. Which of the following
a) Active transport of a	whethere across the place	sma mombrano	
b) Dessive transport of	substances across the plas		
b) Passive transport of	substances across the pla		
c) Diffusion of substan	ces across the plasma me	morane	
d) The thickness of the	plasma membrane		
212. Wine and beer are pro-	duced directly by ferment	tation. Brandy and whisky re	equire both fermentation and
distillation because			
a) Fermentation is inhi	bited at an alcohol level o	of 10-18%	
b) Distillation prolongs	storage		
c) Distillation improve	s quality		
d) Distillation purifies	the beverage		
213. For gaseous exchange	plants have		
a) Stomata	b) Lenticels	c) Pores	d) Both (a) and (b)
214. Citric acid cycle was di	scovered by		
a) Hans Krebs'; 1937	b) Jon Mathai; 1937	c) Parna; 1936	d) Embeden; 1936
215. Vitamin-C was the first	vitamin to be produced h	by a fermentation process us	ing
a) Penicillium	b) E. coli	c) Yersinia pestis	d) Acetobacter
216. Net gain of ATP from o	ne molecule of glucose in	glycolysis, is	
a) 3	b) 6	c) 8	d) 2
217. In Krebs' cycle. GTP is t	formed in	,	,
a) Oxidative phosphor	vlation	b) Substrate level phos	sphorylation
c) Photophosphorylati	on	d) Decarboxylation	,p,
218 A competitive inhibitor	c of Succinic Dehydrogen:	ase is	
a) Malonate	h) Ovaloacetate	c) α -ketoglutarate	d) Malate
210 The net gain of ATP fro	om complete ovidation of	one molecule of glucose in e	ukarvote is
21). The net gain of ATT ne	h) 4		d) 26
aj 2 220 Animals aro	UJ 4	CJ 24	uj 50
220. Allillidis di t	h) Autotrophia	a) Dath (a) and (b)	d) None of these
a) neterourophic		CJ DUUI (a) and (D)	u) None of these
221. During Kreb's cycle of	A NADH,B ATP IS]	produced through ETS in mi	lochonaria. Choose, the
correct pair from the o	ption given below		

a) A-2; B-4	b) A-4; B-2	c) A-6, B-18	d) A-2; B-8
222. Product of glycolysis	s is		
a) Citric acid			
b) Dihydroxy acetor	ie		
c) Pyruvic acid			
d) Phosphoenol pyr	uvate		
223. Electron Transport	System (ETS) occurs in		
a) Inner mitochondi	rial membrane	b) Outer mitochondrial 1	nembrane
c) Both (a) and (b)		d) Not specific place	
224. In aerobic respiration	on, citric acid cycle takes place	in	
a) Cytosol		b) Mitochondria	
c) Peroxisome		d) Endoplasmic reticulu	m
225. If RQ is less than 1.0	in a respiratory metabolism, i	t would mean that	
a) Carbohydrates ar	e used as respiratory substrat	e	
b) Organic acids are	used as respiratory substrate	-	
c) The oxidation of t	the respiratory substrate consi	umed more oxygen than the	amount of CO ₂ released
d) The oxidation of t	the respiratory substrate const	umed less oxygen than the a	mount of CO ₂ released
226 Calorie is the unit of		unieu iess oxygen than the a	mount of 602 released
220. Calorie is the unit of	h) Tomporaturo	c) Light	d) Hoat
aj sounu 227 Which of the followi	b) reinperature	c) Light	uj neat
227. Which of the followi	ng organism is useful in the pr	eparation of Roquelort chee	
a) Mucor	b) Rhizopus	c) Aspergillus	a) Penicilium
228. What is the correct of	order of the stages of cellular r	espiration?	
a) Krebs' – 1	Electron	 – Glycolysis cycle transp 	bort chain
b) Electron –	Krebs' cycle	 – Glycolysis transport 	chain
c) Glycolysis – k	Krebs' cycle	 Electron transport cl 	nain
d) Glycolysis –	Electron transport chain	 Krebs' cycle 	
229. The term glycolysis	has originated from the Greek	word and	
a) Glycos, lysis	b) Glycol, analysis	c) Glycerol, lysis	d) Glycol, lysis
230. The organelle associ	ated with aerobic respiration	is	
a) Chloroplast	b) Centriole	c) Nucleus	d) Mitochondria
231. Incomplete breakdo	wn of sugar in anaerobic respi	ration forms	
a) Glucose and carb	on dioxide	b) Alcohol and carbon di	oxide
c) Water and carbor	ı dioxide	d) Fructose and water	
232. The total energy tra	pped per gm mole of glucose is	s 1292 kJ with on efficiency	of
a) 35%	b) 55%	c) 45%	d) 25%
233. Phase common in ac	erobic and anaerobic respiration	on is	-
a) Krebs' cycle	b) Glycolysis	c) Glycogenolysis	d) ETS
234. Synthesis process in	organism is also called	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
a) Catabolism	b) Anabolism	c) Both (a) and (b)	d) None of these
235. Oxalosuccinic acid. a	an intermediary compound of I	Krebs' cycle is a	
a) 5-carbon compou	and b) 6-carbon compound	c) 4-carbon compound	d) 3-carbon compound
236 Which of the followi	ng process takes place in mito	chondria?	aj 5 carbon compound
a) Photolysis	ing process takes place in lines	h) Photophosphorylation	n
a) Carboxylation		d) Ovidative phosphoryl	ation
227 How much porconta	a of onergy is released during	a) oxidative phospholy	formantation?
257. now inucli percenta	b o		d) Loca then 7
aj z		CJ 8	a) Less than 7
238. Calculation of ATP g	ani for every glucose is made o	on certain assumptions. Cho	use the correct option in
accordance with the	statement given above	1	
a) The pathway fund	ctioning is sequential and orde	rly	
b) One substrate for	ms the reactant for the others		

c) TCA cycle and E	TS pathway follow one afte	r another	
d) All of the above			
239. Sucrose is converte	ed into		
a) Glucose and frue	ctose	b) Triose phosphate	and pyruvic acid
c) Oxlic acid and ci	tric acid	d) Citric acid and pyr	uvic acid
240. Which of the follow	ving respiratory substrates	requires the highest number	• of oxygen molecules for its
complete oxidatior	1?		
a) Tripalmitin	b) Triolein	c) Tartaric acid	d) Oleic acid
241. The metabolic path	way through which the ele	ectron passes from one carrie	r to another is called
a) Electron transpo	ort system	b) Electron procedur	e system
c) Electron moving	; procedure	d) None of the above	
242. In which one of the	following options, the two	names refer to one and the s	same thing?
a) Citric acid cycle	and Calvin cycle	b) Tricarboxylic acid	cycle and urea cycle
c) Krebs' cycle and	Calvin cycle	d) Tricarboxylic acid	cycle and citric acid cycle
243. The complete com	oustion of glucose in respir	ation is represented by	
a) $C_6H_{12}O_6 + 6O_2$	$\rightarrow 6CO_2 + 6H_2O + Energy$		
b) $C_6 H_{12} O_6 + 6 C O_2$	$_2 \rightarrow +60_2 + 6H_2O + Energ$	У	
c) $C_6H_{12}O_6 + 6O_2$	$+6CO_2 \rightarrow +6CO_2 + 6H_2O + 6H$	+ Energy	
d) $C_6 H_{12} O_6 + 6 O_2$	$\rightarrow 6CO_2 + ATP \rightarrow 6CO_2 + 6CO_$	$6H_2O + 6O_2 + Energy$	
244. The overall goal of	glycolysis, Krebs' cycle and	l the electron transport syste	m is the formation of
a) ATP in small ste	pwise units	b) ATP in one large o	xidation reaction
c) Sugars		d) Nucleic acids	
245. In glycolysis, NADH	$I + H^+$ is formed from NAD), when	
a) 3-phosphoglyce	ral dehyde (PGAL) is conve	erted to 1, 3-bisphosphoglyce	rate (BPGA)
b) Triose phosphat	e is converted to 2-phosph	oglycerate	
c) 2-phosphoglyce	rate is converted to 2-phos	phopyruvate	
d) 2-phosphopyruv	/ate is converted to 2-pyruv	vic acid	

NEET BIOLOGY

RESPIRATION IN PLANTS

					:	ANS	W	ER K	EY:						
								1							_
1)	С	2)	b	3)	а	4)	а	129)	d	130)	b	131)	а	132)	a
5)	С	6)	С	7)	С	8)	С	133)	b	134)	d	135)	С	136)	d
9)	b	10)	d	11)	b	12)	а	137)	а	138)	d	139)	а	140)	b
13)	С	14)	а	15)	а	16)	b	141)	С	142)	С	143)	а	144)	b
17)	b	18)	С	19)	d	20)	b	145)	а	146)	а	147)	b	148)	b
21)	d	22)	С	23)	b	24)	b	149)	d	150)	d	151)	С	152)	а
25)	b	26)	С	27)	а	28)	а	153)	а	154)	b	155)	а	156)	d
29)	b	30)	С	31)	d	32)	а	157)	b	158)	d	159)	а	160)	d
33)	а	34)	а	35)	b	36)	а	161)	а	162)	а	163)	а	164)	С
37)	С	38)	d	39)	b	40)	С	165)	d	166)	а	167)	а	168)	а
41)	b	42)	а	43)	d	44)	а	169)	а	170)	С	171)	b	172)	а
45)	С	46)	b	47)	С	48)	b	173)	b	174)	С	175)	а	176)	b
49)	а	50)	b	51)	С	52)	d	177)	d	178)	а	179)	d	180)	а
53)	d	54)	d	55)	С	56)	d	181)	b	182)	b	183)	а	184)	С
57)	d	58)	С	59)	а	60)	а	185)	b	186)	d	187)	С	188)	b
61)	а	62)	С	63)	С	64)	а	189)	а	190)	b	191)	С	192)	b
65)	С	66)	а	67)	b	68)	а	193)	С	194)	С	195)	b	196)	а
69)	b	70)	а	71)	d	72)	d	197)	b	198)	d	199)	d	200)	d
73)	С	74)	b	75)	b	76)	С	201)	С	202)	b	203)	а	204)	b
77)	С	78)	С	79)	С	80)	а	205)	С	206)	b	207)	а	208)	d
81)	С	82)	d	83)	b	84)	а	209)	С	210)	а	211)	а	212)	a
85)	а	86)	b	87)	а	88)	а	213)	d	214)	а	215)	d	216)	d
89)	d	90)	С	91)	а	92)	d	217)	b	218)	а	219)	d	220)	а
93)	b	94)	d	95)	С	96)	а	221)	С	222)	С	223)	а	224)	b
97)	b	98)	d	99)	С	100)	С	225)	С	226)	d	227)	С	228)	С
101)	С	102)	d	103)	а	104)	а	229)	а	230)	d	231)	b	232)	С
105)	b	106)	b	107)	С	108)	а	233)	b	234)	b	235)	b	236)	d
109)	С	110)	а	111)	С	112)	d	237)	d	238)	d	239)	а	240)	b
113)	b	114)	С	115)	С	116)	a	241)	а	242)	d	243)	а	244)	a
117)	b	118)	а	119)	а	120)	b	245)	а	-		-		-	
121)	а	122)	b	123)	а	124)	b								
125)	d	126)	а	127)	d	128)	а								

NEET BIOLOGY

RESPIRATION IN PLANTS

: HINTS AND SOLUTIONS :

7

1 (c)

Complex I of electron transport system (ETS) is NADH dehydrogenase, which oxidase NADH produced in the mitochondrial matrix during citric acid cycle. Complex IV of cytochrome-and a₃ and two copper centres.

2 **(b)**

In fermentation, incomplete oxidation of glucose is achieved under anaerobic condition by sets of reactions where pyruvic acid is converted to CO_2 ethanol and sometimes lactic acid

3 **(a)**

The cellular respiration first takes place in the cytoplasm.

4 **(a)**

The scheme of glycolysis was given by Gustav Embden, Otto Mayerhof and J Parnas. It is the only process in respiration for anaerobic organism. It is ofter referred as the EMP pathway

5 **(c)**

Glycolysis was discovered by Gustav Embden, Otto Mayerhof and J Parnas. To give honour to them the glycolysis pathway is also called EMP pathway by taking initial name of theirs

6 **(c)**

Mitochondria contains various enzymes as follows:

1.Outer Membrane: Acetyl transferase, glycerophosphatase, phospholipase-A, monoamine oxidase, etc.

2.Inner Membrane: Cytochrome oxidase, dehydrogenase, succinate, NADH dehydrogenase, ATPase, etc.

3.Perimitochondrial Space: Adenylate kinase, nucleoside diphosphokinase, etc.

4.Matrix : Pyruvate dehydrogenase, citrate synthase, Aconitase, isocitrate dehydrogenase,

fumerase, α -ketogulatrate dehydrogenase, malate dehydrogenase, etc.

(c)

In eukaryotes, all the reactions of tricarboxylic acid (TCA) cycle or Krebs' cycle takes place in the matrix of mitochondria because all enzymes of this cycle are found in the matrix of mitochondria except Succinic dehydrogenase, which is located in the inner membrane of mitochondria. In prokaryotes, Krebs' cycle occurs in cytoplasm.

8 (c)

Glyceraldehyde-3-phosphate is required for the oxidative reaction during glycolysis.

(b)

9

Aerobic respiration occurs in the presence of oxygen that leads to a complete oxidation of organic substances and releases CO_2 , water and a large amount of energy. This type of respiration is most common in higher organism

10 **(d)**

On administration of glucose orally respiration will take place.

11 **(b)**

30 ATP molecules could be generated from 686 kcal energy.

12 **(a)**

NADPH is formed during light reaction of photosynthesis and also formed during hexose monophosphate shunt (HMP shunt) of glucose oxidation.

13 **(c)**

Plants can get along without respiratory organ because plant part takes care of its own gas exchange needs and less demand for gas exchange. Because only during photosynthesis are large volumes of gases exchanges and each leaf is well adapted to take care of its own needs, during these period

15 **(a)**

	During the oxidation process (occurs in inner	23	(b)
	mitochondrial membrane during electron		In K
	transport system) enormous amount of free		frag
	energy is released, some of which is utilized by		com
	inner membrane sub units of		bro
	F ₁ particles containing three coupling factors and		atta
	ATPase enzyme, in the synthesis of ATP		6C-0
	molecules.	24	(b)
16	(b)		NAI
	Pyruvate which is formed by the glycolytic		thro
	catabolism of carbohydrate undergoes oxidative		aero
	decarboxylation by a complex set of reactions	25	(b)
	catalysed by pyruvate dehydrogenase		Elec
17	(b)		mit
	The intermediate compound which link glycolsis		ubio
	with Krebs' cycle is acetyl Co-A.		carı
18	(c)		Seq
	All the enzymes of Krebs' cycle, fatty acid		NAI
	synthesis and amino acid synthesis are found in		Cyte
	matrix but Succinic dehydrogenase and		02
	cytochrome oxidase are present on inner	26	(c)
	membrane of mitochondria.		Dur
19	(d)		cell
	Enolase works on 2-phosphoglyceric acid (3C-		lact
	compound), Aconitase on citric acid (6C-	27	(a)
	compound). Fumerase on Fumaric acid (4C-		Fer
	compound) and alcohol dehydrogenase on		brea
	acetaldehyde (2C-compound). Thus, increasing		resp
	order of these enzymes based on the carbon		H ₂ C
	number of the substrates on which they act is – IV,	28	(a)
	I, III, II.		N ai
20		30	(c)
	Pyruvic acid synthesized in glycolysis must enter		Pyr
	inside the mitochondnia, where oxidative		trar
	Decarboxylation occurs in presence of NAD+,		seco
	pyruvic acid Dehydrogenase complex and		ente
	coenzyme-A.		one
	$Pyruvic acid + NAD' + Co-A \xrightarrow{+Co-A} Acetyl Co-A$		0X10
	$+ CO_2 + NADH$	21	0X10
21	(d)	31	(a)
	Saccharomyces cerevisiae is a species of budding		USU
	yeast. It is commonly known as 'baker's yeast' or		ene
	(brown's woost' The woost form onto sugars		can

'brewer's yeast'. The yeast ferments sugars present in the flour or added to the dough, giving off carbon dioxide (CO_2) and alcohol (ethanol). The carbon dioxide is trapped as tiny bubbles in the dough, which rises.

22 (c)

Respiration and respiratory quotient is measured by respirometer

23 **(b)**

Krebs' cycle, acetyl Co-A adds its two-carbon gment to oxaloacetate, a four-carbon mpound. The unstable bond of acetyl Co-A is oken as oxaloacetate the coenzyme and aches to the acetyl group. The product is the -citrate.

ADH is oxidised to NAD⁺ slowly in fermentation, rough the reaction is very vigorous in case of robic respiration

ectron transport chain takes place in the inner tochondrial membrane and consists of flavins, iquinone, cytochromes and oxygen as electron rriers.

quence of electron transport :

 $ADH_2 \rightarrow FAD \rightarrow Co-Q \rightarrow$

tochrome -b \rightarrow Cyt-c₁ \rightarrow Cyt-a \rightarrow Cyt -a₃ \rightarrow

ring exercise where O_2 is inadequate for llular respiration, pyruvic acid is reduced into tic acid by lactate dehydrogenase

rmentation accounts for only a partial eakdown of glucose whereas in aerobic spiration it is completely degraded to CO₂ and 0

and P are required by plants for ATP formation.

ruvic acid, generated in the cytosol is insported to mitochondria and thus initiate the cond phase of respiration. Before pyruvic acid ters Kreb's cycle, operative in the mitochondria, e of the three carbon atoms of pyruvic acid is dised to carbon dioxide in a reaction called idative decarboxylation

ually carbohydrate are oxidised to release ergy, but proteins, fats and even organic acids n be used as respiratory substances in some plants, under certain condition

32 (a)

One of the three carbon atoms of pyruvic acid is oxidised to carbon dioxide. The combination of the remaining two carbon acetate unit is readily accepted by a sulphur containing compound coenzyme A (Co-A) to form acetyl Co-A. This is the connecting link between glycolysis and Kreb's cycle

33 **(a)**

In eukaryotes, electron transport and oxidative phosphorylation occur in the inner membrane of mitochondria. The significant enzymes of inner mitochondrial membrane are enzymes of electron transport pathways viz. NAD, FAD, DPN (diphosphopyridine nucleotide) dehydrogenase, five cytochromes (cytochrome-b, cytochrome-c, cytochrome- c_1 , cytochromes-a and cytochrome- a_3), ubiquinone or coenzyme- Q_{10} , non-haem copper and iron, ATP synthetase, succinate fatty acid acyl transferase.

34 **(a)**

Saprophytes like fungi are dependent on dead and decaying matter

35 **(b)**

Mitochondria are known as power house of cell. Glyceraldehyde-3-phosphate dehydrogenation reaction is found in cytoplasm during glycolysis, other three reactions take place in mitochondria.

36 **(a)**

In the process of glycolysis, 6 carbon molecules of glucose is split into 2, 3-carbon molecules of pyruvic acid. In this, one molecules of NAD⁺ are reduced for each glucose molecule. The energy stored with the NADH is released in the electron transport chain. This process (glycolysis) occurs in cytosol

37 **(c)**

The oxidation of Succinic acid to Fumaric acid in Krebs' cycle is catalyzed by Succinic

dehydrogenase. Succinic dehydrogenase is attach to mitochondrial inner membrane.

38 **(d)**

Succinate dehydrogenase enzyme is present on inner membrane of mitochondria and catalysed the oxidation of succinate to fumarate.

39 **(b)**

The TCA cycle starts with the condensation of acetyl group with oxaloacetic acid (OAA) and water to yield citric acid. The reaction is catalyzed by the enzyme citrate synthase and molecule of Co-A is released

40 **(c)**

Krebs' cycle is also called as citric acid cycle49because citric acid is the first product of this cycle49and also called Tricarboxylic acid cycle (TCA)because citric acid is a called Tricarboxylic acid.

In eukaryotic organisms, all reactions of Krebs' cycle take place in matrix of mitochondria because all enzymes of this cycle are found in matrix of mitochondria except Succinic dehydrogenase (located in inner membrane of mitochondria).

41 **(b)**

In electron transport chain, cytochrome-a is an electron carrier, which contains copper with iron. It picks up electrons to oxygen. Therefore, oxygen accepts the terminal electrons.

42 **(a)**

In electron transport system oxygen acts as the final hydrogen acceptor where it derives the whole process by removing hydrogen from the system

43 **(d)**

If a starving plant is provided with glucose, its rate of respiration will increase because of the availability of food for respiration.

44 **(a)**

Malic acid is a product of aerobic respiration. Ethyl alcohol and lactic acid are formed as a result of anaerobic respiration (fermentation), while pyruvic acid is produced during both-aerobic and anaerobic respiration.

45 **(c)**

 $A - 2H^+, B - F_0, C - F_1$

46 **(b)**

In Krebs' cycle, pyruvic acid is converted into carbon dioxide and water.

47 **(c)**

An enzyme may have areas that control the confirmation of active sites. They are called Allosteric sites. Such an enzyme is called Allosteric enzyme, e.g., glucokinase, phosphofructokinase. Substance, which bring about changes in Allosteric sites are called modulators.

48 **(b)**

In glycolytic pathway, 3PGAL is converted into 1, 3-diphosphoglyceric acid by an oxidation and phosphorylation reaction, which occurs in presence of H_3PO_4 and coenzyme NAD. 3-phosphoglyceraldehyde + NAD⁺ + Pi⁻² \rightarrow 3phosphoglyceraldehyde dehydrogenase 1, 3diphosphplyceric acid + NADH +H⁺

) (a)

Pyruvic acid forms as a result of glycolysis in cytoplasm of cell. Oxidation of pyruvic acid into

acetyl Co-A begins the citric acid cycle (Krebs' cycle) in mitochondria.

50 **(b)**

When oxygen is not available, yeast or some other57microbes respire anaerobically. In case ofanaerobic respiration, the value of respiratoryquotient is not utilized, eg,

 $C_6H_{12}O_6 \xrightarrow{Zymase} C_6H_{12}O_6$

 $3C_2H_5OH + 2CO_2 +$

Glu

Ethyl alcohol

51 **(c)**

All living organisms need energy for carrying out daily life activities and is obtained by oxidation of macromolecules

52 **(d)**

In TCA cycle TCA substrate oxidise by releasing NADH + H⁺, which produces three ATP molecules. So, one glucose molecule through TCA produces 6 NADH + H⁺. So 18 ATP produced through electron transport chain. 2 FADH₂ of Kreb's cycle produced 4 ATP

53 **(d)**

Chemiosmotic hypothesis of ATP synthesis was proposed by Peter Mitchell in 1961.

54 **(d)**

Alcoholic fermentation by yeast causes decorboxylation of pyruvate to acetaldehyde producing CO2 as byproduct. Acetalatehyde accepts 2H atoms from NADH2 to produce ethanol

55 **(c)**

Pyruvic acid is intermediate compound, which is produced during oxidation of all types of respiratory substrates carbohydrates, fats and proteins

Option **(d)** Acetyl Co-A may also be answer but more appropriate is pyruvic acid as it formed directly by all these respiratory substrates

56 **(d)**

Respiratory quotient (RQ) is the ratio of the volume of carbon dioxide produced to the volume of oxygen consumed in respiration over a period of time. The values of RQ for various substrates are :

Carbohydrate – One

Fat, protein- Less than oneOrganic acid- More than oneSucculents- Zero

(d)

Pyruvic acid inters in the matrix of mitochondria and undergoes acetylation by oxidative Decarboxylation to form 2-carbon compound acetyl Co-A. Krebs' cycle is basically a catabolic cycle as it oxidises acetyl Co-A and organic acids into carbon dioxide and water.

58 **(c)**

Out of the four phases of cellular respiration all except glycolysis (occur in cytoplasm-outside mitochondria) take place in mitochondria. The enzymes of Krebs' cycle are located in the matrix of mitochondria, while that of oxidative phosphorylation are located in inner mitochondrial membrane.

59 **(a)**

ATP is an energy rich compound, which is structurally most similar to a molecule of RNA nucleotide.

60 **(a)**

DCMU is a herbicide which acts as an inhibitor of non-cyclic electron transport; PMA is fungicide which reduces transpiration; colchicine is an antimicrobial drug, it causes prevention of mitotic spindle formation thus blocking the mitosis

61 **(a)**

Oxidation of one molecule of NADH gives rise to 3 molecules of ATP.

62 **(c)**

An amphibolic pathway is a biochemical pathway that serves both anabolic and catabolic processes. An important example of an amphibolic pathway is the Krebs' cycle, which involves both the catabolism of carbohydrates and fatty acid and the synthesis of anabolic precursors for amino acid synthesis, eg, α -ketogluturate and oxaloacetate.

63 **(c)**

In alcoholic fermentation,

1.NADH (formed during conversion of triose-3phosphate to 3-phosphoglycerate) is oxidized to NAD⁺

2.Electrons are accepted by acetaldehyde formed by Decarboxylation of pyruvate.

64 **(a)**

Wherever oxygen involves as a substrate is known as oxidation. Therefore respiration is oxidation process

65 **(c)**

Net gain of ATP during aerobic respiration 1.Glycolysis provides 2ATP molecules and 2NADH+H⁺

2.Pyruvate oxidation yields 2NADH + H⁺

3.Krebs' cycle produces 2GTP molecules, 6NADH + H⁺ and 2FADH₂ molecules.

4.In electron transport system one NADH + H^+ produce 3ATP and FADH₂ produces 32 or 34 ATP.

2ATP from glycolysis + 2GTP from TCA cycle and 32/34 ATP from ETS/ETC = 38/36 ATP molecule.

66 **(a)**

Cyanides, antimycin A, carbon monoxide inhibits the process of electron transport chain

68 (a)

There is two step in glycolysis where ATP is formed or synthesised by ADP (i) When 1, 3, bisphosphoglyceric acid is changed into 3-phosphoglyceric acid (ii) When phosphoenolpyruvate (PEPA) is changed into pyruvic acid

69 **(b)**

Fats give maximum energy on oxidation. As palmitic acid is a fatty acid produced by hydrolysis of fat, hence, produces maximum number of ATP on oxidation.

70 (a)

Glycolysis is a series of reactions that takes place in the cytoplasm of all prokaryotes and eukaryotes. The role of glycolysis is to produce energy (both directly and by supplying substrate for the citric acid cycle and oxidative phosphorylation) and to produce intermediates for biosynthetic pathway.

71 (d)

Krebs' cycle begins with the reaction of acetyl Co-A with oxaloacetic acid in presence of the enzyme citrate synthase.

72 (d)

Acetyl Co-A is the link between glycolysis and Kreb cycle, for formation of acetyl Co-A the Cofactor TPP, lipoic acid and Mg²⁺, Co-A is required 73 **(c)** Carbon dioxide is released by anaerobic

repiration in plants

74 **(b)**

Respiratory quotient is the ratio of carbon dioxide output to oxygen used during respiration. $RQ = \frac{volume \ of \ carbon \ dioxide \ formed}{V}$

volume of oxygen utilized Substrate RO Carbohydrate

1

Protein

0.80 Fat (tripalmitin)

0.70 Mixed diet

0.85 Organic acids (oxalic acid)

4.0

75 **(b)**

TCA cycle starts with the condensation of acetyl group with Oxalo Acetic Acid (OAA) and water to yield citric acid. The reaction is catalysed by the enzyme citrate synthase

76 (c)

Respiratory quotient (the ratio between the volume of carbon dioxide liberated to the volume of oxygen absorbed in respiration) is less than one, when fats and proteins are respired. Castor oil is rich in fatty substances.

77 (c)

Before entering respiratory pathway amino acids are deaminated

78 (c)

34 molecules of ATP (30 through NADH and 4 through FADH₂) are obtained as a result of oxidative phosphorylation. Rest 4 molecules are obtained as a result of direct phosphorylation.

79 (c)

00	Decarboxylation occurs in Krebs' cycle.		They trap light energy and convert it into
80	(a) The citric acid cycle for production of energy in		carbohydrates like glucose, sucrose and starch
	the cell was described by Kreb's, therefore TCA	88	(a)
	cycle is also known as Kreb's cycle	00	Intermediate in the pathway are utilised to
81	(c)		synthesise other compound
	1 molecule of glucoses yields 262 8 kcal of usable	89	(d)
	energy		In plants, glucose is derived from sucrose which is
	No. of glucose molecule required to produce		the end product of photosynthesis or form
	4800 kcal energy $=\frac{4800}{262.8}=18$		storage carbohydrate
	1 molecule of ATP yield 7.3 kcal of usable energy	90	
	No. of ATP molecules required to produce		As per chemiosmotic hypothesis ATP synthetase
	4800 kcal energy = $\frac{4800}{72}$ = 657		becomes active in ATP formation only where
82	(d)		there is a proton gradient naving higher $f(x)$
	Coliforms are defined as aerobic or facultative		as composed to outer side
	anaerobic, Gram negative, non-endospore	91	(a)
	forming, rod-shaped bacteria that ferment lactose		Louis Pasteur observed that yeast cells grew
	to form gas.		rapidly in air but used little sugar and produced
83	(b)		little carbon dioxide and ethanol. Under anaerobic
	Due to excessive contraction of muscles (eg, leg		conditions, they grew slower but used more sugar
	muscles in hurdle race), the metabolic products of		and produced more carbon dioxide and ethanol.
	give on the second and the second s		This phenomenon of inhibition of breakdown of
	the fatigued muscle.		carbohydrate and production of ethanol is known
84	(a)		as Pasteur effect. Diochemically, Pasteur effect is
	Like the bacterial respiration, in animal cells		enzyme in the presence of oxygen.
	during the exercise when oxygen is inadequate for	92	(d)
	cellular respiration pyruvic acid is reduced to		Organic acid evolves more carbon dioxide than
	lactic acid by lactate dehydrogenase. The reducing		volume of oxygen consumed when broken down
	agent is NADH + H^+ which is reoxidised to NAD ⁺		as respiratory substrate under aerobic conditions,
05	in both the process		i.e., RQ is more than unity.
85	(a) During the respiration compounds are needed to	93	(b)
	break and perform the next step to release ATP. It		Anaerobic respiration in microorganisms is called
	is specifically called respiratory substrate		and produced lactic acid athyl alcohol atc from
86	(b)		glucose. It is useful in manufacture of wine, heer
	The given compound $(C_{51}H_{98}O_6)$ is tripalmitin (2		and bread.
	molecules) used as a substrate. This substrate is	94	(d)
	used in respiration the respiratory quotient is less		The main purpose of cellular respiration is to get
	than 1. The given below derivation explained		energy that is utilised for functioning various
	much clear way		purpose. Glucose energy is converted into ATP,
	Respiratory quotient = $\frac{100000000}{\text{Consumed }0_2} = \frac{102000}{14500} =$		which is utilised by cell
	0.7	95	(C)
87	(a)		Gucose-6-phosphate yields less than 4 kcal/mol,
	All the energy required for life processes is	96	(a)
	obtained by oxidation of some macromolecules	70	5g moles glucose on complete oxidation releases
	that we call food.		3430 kcal of energy.
	omy green plants and cyanobacteria can prepare	0 7	

their own food by the process of photosynthesis. 97 (b)

	NADP, NAD and FAD are coenzyme formed from vitamins and work as electron acceptor in cellular metabolism.	106	aerobic and anaerobic respiration. Last product is pyruvic acid. (b)
98	(d) Glycolysis of one molecule of glucose produces 2PGAL, thus of three molecules will produce 6PGAL.		The electron acceptors of respiratory chains occur in linear sequences (cytb, c, a, a_3) and their enzymes are components of the inner mitochondrial membrane.
99	Respiration of one molecule of glucose or 2PGAL produces 38ATP molecules, thus, of 6PGAL will produce 114 ATP molecules. Out of the given option, 120 ATP is the nearest correct answer. (c)	107	(c) In microorganisms, the term anaerobic respiration is replaced by fermentation. The pyruvic acid formed in glycolysis is transformed to ethyl alcohol and release 2 ATP molecules.
100	Aspartic acid $+ \alpha$ -ketoglutaric acid \rightarrow oxaloacetic acid $+$ glutamic acid This is an example of transamination reaction. In this, amino group of aspartic acid is transferred to glutamic acid.	108	(a) One of the three carbon atoms of pyruvic acid which is the end product of glycolysis is oxidised to carbon dioxide in a reaction called oxidative decarboxylation. Pyruvate is first decarboxylated
100	(c) Acetyl Co-A is a common intermediate of carbohydrate and fat metabolism. It is a substrate	109	and oxidised by the enzyme pyruvatedehydrogenase(c)
	entrant of Krebs' cycle and acts as a connecting link between glycolysis and Krebs' cycle.	110	Saccharomyces shows Pasteur's effect. (a)
101	(c) The pyruvic acid formed during glycolysis enters to mitochondria where oxidative Decarboxylation takes place and acetyl Co-A is formed. It occurs in presence of NAD ⁺ , pyruvic acid Dehydrogenase complex and coenzyme-A. pyruvic acid + NAD ⁺ \rightarrow Acetyl Co-A + NADH + H ⁺ + CO ₂	111	Fermentation is a type of cellular respiration found in plants and some unicellular microorganism, which does not require oxygen, i.e., anaerobic respiration , and that results in the production of ethanol from glucose and release of small amount of energy. (c)
103	(a) Oxidation of one molecule of NADH give rise to 3 molecules of ATP while that of one molecule of FADH ₂ produces 2 molecules of ATP	112	Krebs' cycle is also called as citric acid cycle. Citric acid (Tricarboxylic acid) is the first product of this cycle. (d)
104	(a) Respiration is defined as breaking down of C-C bond of various organic molecules by oxidation process for cellular use		Six carbon dioxide molecules are released by complete oxidation of one glucose molecules. Two carbon dioxide molecules are released during oxidative Decarboxylation reaction and four
105	(b) If oxygen is not available, pyruvic acid undergoes anaerobic respiration/fermentation, but under aerobic condition, the pyruvic acid enters into mitochondria and converted to Acetyl Co-A . Acetyl Co-A functions as substrate entrant for Krebs' cycle so, a connecting link between glycolysis and Krebs' cycle.	113	carbon dioxide molecules are released in Krebs' cycle or tricarboxylic Acid cycle. (b) The respiratory decomposition of fatty acids is known as beta oxidation, which occurs in liver and adipose tissue. First of all, there is activation of fatty acid, then dehydrogenation of activated fatty acid takes place. This is followed by hydration. The <i>e</i> hydrogenation and derivative is
	(hexose sugar) to two molecules of pyruvic acid through a series of enzyme mediated reactions. It occurs in cytoplasm and is common both to	114	converted to β -keto derivative which then reacts with Co-A. (c)

Respiratory Quotient (RQ) is the ratio of volume of CO_2 released to the volume of O_2 absorbed during respiration. In case of organic acids (eg., oxalic acid), more CO_2 is released than the O_2 absorbed. Hence, RQ of organic acids is always more than one.

 $2(COOH)_2 + O_2 \rightarrow 4CO_2 + 2H_2O + Energy$

$$RQ = \frac{4CO_2}{1O_2} = 4$$

115 **(c)**

ATP is called as energy currency of cell.

116 **(a)**

Breakdown processes within the living organism is also called catabolism

117 **(b)**

In fermentation, the incomplete oxidation of glucose is achieved under, anaerobic condition by set of reactions, where pyruvic acid is converted into carbon dioxide and ethanol. The enzyme, pyruvic acid decarboxylase and alcohol Dehydrogenase catalyse these reactions.

118 **(a)**

ATP is utilised at two steps – First in the conversion of glucose into glucose – 6 phosphate and second in the conversion of fructose – 6 – phosphate to fructose 1, 6 biphosphate

119 **(a)**

Aerobic respiration takes place within the mitochondria, the final product of glycolysis, pyruvate is transported from the cytoplasm into the mitochondria

121 **(a)**

Oxaloacetic acid – 4C. Phosphoglyceric acid – 3C Ribulose bisphosphite – 3C. Phosphoenl pyruvate – 3C

122 **(b)**

In the non-competitive inhibition of enzymes, the inhibitor (cyanide) has no structural similarity with the substrate (cytochrome-c) and binds to the enzyme at a point other than its active site which leads to change in globular structure of enzyme. Hence, even if the substrate is able to bind with the enzyme, catalysis will not take place.

123 **(a)**

During anaerobic respiration, one molecule of glucose gives two molecules of ATP. Thus, 8 molecules of ATP are produced.

Peter Mitchell (1961) proposed the chemiosmotic mechanism of ATP synthesis which, states that ATP synthesis occurs due to H⁺ flow through a membrane. It includes development of proton gradient and proton flow.

125 **(d)**

In the process of glycolysis, 6-carbon molecules of glucose are split into two 3-carbon molecules of pyruvic acid. In this, two molecules of NAD⁺ are reduced for each glucose molecule. The energy stored within the NADH is released in the electron transport chain.

126 **(a)**

Citric acid cycle is also known as Tricarboxylic acid cycle (TCA)

127 **(d)**

In respiration, whether it is aerobic or anaerobic glucose undergoes oxidation to form energy. In plants glucose is derived from sucrose which is the end product of photosynthesis or from storage carbohydrate. Sucrose is converted into glucose and fructose by the enzyme invertase to enter into the first step of respiration which is glycolytic pathway

128 **(a)**

Fat breakdown into fatty acid and glycerol before entering into the respiratory pathway

129 **(d)**

In glycolysis, water molecule is removed during conversion of 2-phosphoglycerate to phosphoenol pyruvate.

Conversion of fructose-6-phosphate to fructose 1-6 biphosphate is characterized by phosphorylation.

130 **(b)**

Pentose Phosphate Pathway (or Warburg-Lippman Dickens cycle) is an alternate method of aerobic respiration, which occurs in the cytoplasm of mature cell. This pathway accounts for 60% of total respiration in liver cells. In this, for every six molecules of glucose, one molecule is completely oxidized in CO_2 and reduced coenzymes, while 5 are regenerated.

131 **(a)**

In the first reaction of citric acid cycle one molecule of acetyl Co-A combines with 4-carbon Oxalo Acetic Acid (OAA) to form 6 carbon citric acid and Co-A is released

132 **(a)**

Page | 26

124 **(b)**

During fermentation, the pyruvic acid releases one molecule of CO_2 to produce acetaldehyde. The acetaldehyde, then reoxidises NADH and is itself reduced to ethanol. These reactions are catalysed by the enzyme, pyruvic acid decarboxylase and alcohol dehydrogenase

NAD⁺ **▲** Ethanol ATP NADH+H⁺ NADH+H⁺ Acetaldehyde 1,3, bisphospoglycerate \rightarrow Pyruvate

133 (b)

In the Krebs' cycle, when Succinic acid undergoes oxidation or dehydrogenation to form Fumaric acid, two hydrogens are transferred to FAD. FAD is reduced to FADH and enzyme involved in this step is Succinic acid dehydrogenase.

134 (d)

Respiratory pathway involved in both anabolism and catabolism, hence it is regarded as amphibolic pathway. In respiratory pathway not only the glucose but also amino acid and fatty acid can be used as intermediatory substances

135 (c)

The RQ value of 4 may be expected from complete 145 (a) oxidation of oxalic acid.

136 (d)

Fatty acid, protein and earbohydrak would be broken down to acetyl Co-A before entering the respiratory pathway when it is used as a substrate

137 (a)

Anaerobic arespiration occurs without O_2 which convince that it happens in lower organism

138 (d)

During the step of Krebs' cycle, where Succinic acid undergoes oxidation or dehydrogenation to form Fumaric acid, FAD is reduced to FADH₂ and enzyme involved in this step is Succinic acid dehydrogenase.

Conversion of isocitric acid to α -ketoglutaric acid, malic acid to oxaloacetic acid and pyruvic acid to acetyl Co-A, all involve reduction of NAD to NADH+H⁺

139 (a)

One molecule of pyruvic acid converted in acetyl Co-A for 3 molecule of NADH + H^+

140 **(b)**

In 1950, Kolliker for the first time seen mitochondria. Later on C Benda coined the term mitochondria. These are the sites of cellular respiration, oxidative phosphorylation, synthesis of haeme protein, cytochrome, myoglobin, etc.

141 (c)

The energy released by oxidation in respiration is not directly used but it stored as ATP. Which is broken down whenever energy needs to be utilised

142 (c)

RQ is one in case of **carbohydrates**, while for fatty acids is less than one and for organic acids RQ is more than one.

143 (a)

Sucrose or cane sugar is widely distributed among higher plants. Its commercial sources are solely sugarcane and beet. It is used as substrate for the formation of alcohol.

144 (b)

The correct sequence in glycolysis is Glucose-6-phosphate \rightarrow 3-phosphoglyceraldehyde Phosphoenol \leftarrow 3-phosphoglyceric acid Pvruvate ſ

Pyruvic acid.

Cyanide is a deadly poison of respiration and inhibit the activity of cytochrome-c oxidase complex (which contains cytochrome-a and cytochrome-a₃) of electron transport chain of aerobic respiration. Thus, no proton gradient will be established and no ATP will be formed. Along with as the reduction of NADH and FADH₂ is also ceased due to blockage of ETS, the availability of hydrogen acceptors like NAD⁺ and FAD is ceased for Krebs' cycle and glycolysis. Cyanide resistance pathway is anaerobic respiration.

146 (a)

Hexokinase causes phosphorylation of glucose to glucose-6 phosphate in both glycolysis and pentose phosphate pathway. Both glycolysis and phosphate pathway occur in cytoplasm. Glucose +

 $ATP \xrightarrow{\text{Hexokinase}} Glucose 6-phosphate + ADP$ 147 **(b)**

> The aerobic respiration takes place within the mitochondria, the final product of glycolysis pyruvate is transported from the cytoplasm into the mitochondria. The major events in aerobic respiration are

148	The complete oxidation of pyruvate by the stepwise removal of all the hydrogen atoms, leaving 3 molecules of CO_2 . The passing on of the electrons removed as part of the hydrogen atoms to molecular O_2 with simultaneous synthesis of ATP	156 157	 (d) Retting is facilitated by anaerobic butyric acid bacteria such as Clostridium botulinum, Clostridium tetani and Clostridium perfringens. (b) RQ is the ration of the volume of carbon dioxide released to the volume of oxygen taken in
110	Glycolysis is an essential and first path of respiration. It is common in both aerobic and anaerobic respiration and occurs in the cytosol of all living cells of prokaryotes as well as	150	respiration. It depends on the nature of the substrate, which is oxidised. For carbohydrates RQ is one, for fats and proteins less than one but more than one for organic acids, etc.
140	eukaryotes	158	(d) The second set Web ETC of with the deviation we have
149	(d) Ovidative phosphorylation or ATD symthesis from		in ATP symtheses which has a head piece stalk and
	NADH occur only under aerobic condition		a base niece Out of these the head niece is
150	(d)		identified as the coupling factor 1(F ₁), stalk
	In ethyl alcohol fermentation,		portion is necessary for binding <i>i</i> to inner
	(i) $2CH_3COCOOH \xrightarrow{\text{pyruvate decarboxylase}}$		mitochondrial membrane and base piece is
	TPP, Mg^{2+}		isolated as F_0 and present within the inner
	Pyruvic acid $2CH_3CHO+2CO_2(\uparrow)$	150	mitochondrial membrane.
	Acataldahyda	129	(a) Protein breaks down into amino acid then enter
	Acetaidenyde		into the glycolytic pathway
	(ii) $2CH_2CHO + 2NADH_2 \xrightarrow{\text{Alcohol}}$	160	(d)
			Ethyl alcohol is commercially manufactured from
	Acetaldehyde		sugarcane. Molasses is the byproduct of sugar
	$2CH_3CH_2OH + 2NAD^+$		of molasses (contains glucose and fructose) by
	Ethyl alcohol		using yeast, Saccharomyces cerevisiae.
4 = 4		161	(a)
151	(C) The estivity of quesingte dehydrogeness is		Krebs' cycle takes place in matrix of mitochondria.
	inhibited by Malonate.		Largest amount of phosphate bond energy is
152	(a)		We get 6CO ₂ , 8NADH ₂ , 2FADH ₂ and 2ATP
	Citric acid is produced by the fermentation of		molecules in Krebs' cycle.
	sugar by Aspergillus niger, <i>Mucor</i> sp and yeast.	162	(a)
153	(a)		In electron transport system, last electron
	In the process of respiration the compound, <i>i.e.</i> ,	4.60	acceptor is oxygen
	oxidation therefore organic substance gets	163	(a)
	oxidised		ethanol and carbon dioxide in presence of Zymase
154	(b)		enzyme.
	Pyruvate is broken down to CO_2 and H_2O in citric acid of tricarboxylic acid cycle (TCA)		$C_6H_{12}O_6 \xrightarrow{\text{Zymase}} 2C_2H_5OH + 2CO_2$
155	(a)		Glucose or Ethanol
	Preparatory phase before fermentation is called	161	Fructose
	upstream processing while downstream	104	Glycolysis is the degradation of glucose molecule
	processing is the name given to the stage after		with net gain of 2ATP molecules per glucose
	rermentation, when the desired product is		molecule. It occurs both in aerobic and anaerobic
	recovereu anu purmeu.		conditions

165 **(d)**

For fatty substances, RQ is generally less than one. $2C_{51}H_{96}O_6 + 145O_2 \rightarrow 102CO_2 + 98H_2O$ $RQ = \frac{co_2}{O_2} = \frac{102}{145} = 0.7$ (less than unity)

166 **(a)**

DCMU is a herbicide which acts as an inhibitor of non-cyclic electron transport; PMA is fungicide which reduces transpiration; colchicines is an antimicrobial drug, it causes prevention of mitotic spindle formation thus blocking the mitosis.

167 (a)

With the complete oxidation of pyruvate by the stepwise removal of all the hydrogen atoms form 3 molecules of CO_2 , which occurs in matrix of the mitochondria

168 **(a)**

In anaerobic respiration bacteria produce lactic acid from pyruvic acid

169 **(a)**

Strains of Saccharomyces cerevisiae (yeast) are extensively used for leavening of bread. During fermentation, the yeasts produce alcohol and carbon dioxide, which leave and the leavened bread becomes porous.

170 **(c)**

Before entering respiratory pathway amino acids are deaminated

171 **(b)**

Pyruvic acid is an intermediate compound common for aerobic and anaerobic respiration because it is the end product in glycolysis and initial product in anaerobic respiration.

172 **(a)**

During alcoholic fermentation of glucose molecule, pyruvic acid is first decarboxylated to form acetaldehyde and CO₂, which is then changed to ethyl alcohol with help of NADH. Net gain is 2ATP molecules per glucose molecule. $C_6H_{12}O_6 + 2ADP + 2Pi \rightarrow 2C_2H_5OH$ Glucose Ethyl alcohol

 $+ 2CO_2 + 2ATP + 2H_2O$

173 **(b)**

4 ATP are formed in glycolysis but 2 ATP used
2 ATP in Krebs' cycle
<u>34 ATP from electron transport chain</u> **40 ATP**

- 401 174 (a)
- 174 **(c)**

It is a fact that the living cells are organised in thin layers inside and beneath the bark. They also have dead cells in the interior which provide mechanical support

175 (a)

Sunlight is the ultimate source of energy on earth. Green plants converted sunlight in form of sucrose. Animals take food from plants and get energy by oxidation of glucose.

176 **(b)**

Dough kept overnight in warm weather becomes soft and spongy due to fermentation.

177 (d)

RQ is the ratio of volume of carbon dioxide evolved and volume of oxygen consumed.

178 **(a)**

On oxidation of fats, maximum amount of energy is liberated.

179 (d)

 $\text{NADH}_2 \rightarrow \text{NAD} \rightarrow \text{NADH}_2$

$$\text{NADH}_2 \rightarrow \text{FAD} \rightarrow \text{FADH}_2$$

The former operates in liver heart and kidney cells and no energy is spent, while the second operates in muscle and nerve cells and lowers the energy level of $2NADH_2$ by 2 ATP molecules

180 **(a)**

Krebs 'cycle involves 8 steps to oxidize 2 molecules of acetyl Co-A produced in transition reaction completely into $4CO_2$, $10H_2O$, 2ATP, $2FADH_2$ and $6NADH+H^+$

181 **(b)**

Respiratory quotient = $\frac{\text{Evolved CO}_2}{\text{Consumed O}_2}$

Hence, how much O_2 will consume. It all depends substrate

182 **(b)**

In anaerobic respiration, *i.e.*, absence of O_2 , glycolysis and fermentation involves. In fermentation incomplete oxidation of glucose is processed by sets of reaction where pyruvic acid is converted to CO_2 and ethanol

183 **(a)**

It is well known fact that photosynthesis in eukarytoes occurs in chloroplast whereas in prokaryotes it is in cytoplasm

184 **(c)**

Anaerobic respiration occurs in absence of oxygen. It is found in deep-seated tissues of plants and animals, germinating seeds, yeasts and bacteria. During anaerobic respiration of yeast, two ATP produced from each glucose molecule. Hence, 38 ATP will produce from 19 glucose molecules.

185 (b)

In aerobic respiration, glycolysis is linked with Krebs' cycle through acetyl Co-A because pyruvic acid (end-product of glycolysis) first converted into acetyl Co-A. The acetyl Co-A enters in the Krebs' cycle. The formation of acetyl Co-A is involved with some cofactors like Mg ions, thiamine pyrophosphate (Vitamin-B₁), NAD⁺, Co-A and lipoic acid.

186 (d)

In anaerobic respiration CO₂ is evolved but oxygen is not used. Therefore in such case respiratory quotient will be infinite. e.g.,

 $C_6H_{12}O_6 \xrightarrow{Zymase} 2 C_2H_5OH + 2 CO_2 + Energy$ Glucose

Where, respiratory quotient = $\frac{\text{Evolved CO}_2}{\text{Consumed O}_2}$

 $=\frac{2 \operatorname{CO}_2}{0 \operatorname{O}_2} = \infty(\operatorname{Infinity})$

187 (c)

The NADH synthesised in glycolysis is transferred into the mitochondria and undergoes oxidative phosphorylation

188 **(b)**

Total gain of 38 ATP molecules during aerobic respiration of one molecule of glucose

189 (a)

During glycolysis, in the presence of enzyme Hexokinase, glucose is converted into glucose-6phosphate by using one ATP molecule in presence of Mg²⁺

190 (b)

In the presence of Zymase, alcoholic fermentation takes place.

191 (c)

During the conversion of Succinyl Co-A to Succinic 199 (d) acid, a molecule of GTP is synthesized. This is a substrate level phosphorylation. In a coupled reaction, GTP is converted to GDP with the simultaneous synthesis of ATP from ADP.

192 (b)

Pyruvic acid is 3C-compound. One of the three carbon atoms of pyruvic acid is oxidised to carbon dioxide in a reaction called oxidative decarboxylation. Pyruvate is first decarboxylated and then oxidised by the enzyme pyruvate dehydrogenase. The combination of the

remaining 2-carbon acetate unit is readily accepted by a sulphur containing compound, coenzyme A (Co-A) to form acetyl Co-A

194 (c)

Generally lower organism, *e.g.*, bacteria and fungi performs anaerobic respiration but also occur in higher organism

195 (b)

Pathway – A is glycolysis \rightarrow 2 NADH + H⁻ Pathway – B is Kreb's cycle \rightarrow 6 NADH + H⁺ Pathway - C is Electron transport system Between pathway A and pathway $B \rightarrow 2 \text{ NADH} +$ H⁺ produced

196 (a)

In electron transport chain respiratory process are to release and utilise the energy stored in NADH + H^+ and FADH₂. This is accomplished when they are oxidised through the electron transport system and the electron are passed on to O_2 resulting in the formation of H_2O

197 (b)

During citric acid cycle, 3 molecules of NAD⁺ and one molecule of FAD (Flavin Adenine Dinucleotide) are reduced to produce NADH and FADH₂ respectively. These reduced electron carriers pass on the hydrogen atoms to oxygen through electron transport system, yielding II more ATP molecules for each molecule of pyruvic acid.

In addition one ATP molecules is generated directly during the cycle to give a total of 12 ATP molecule per pyruvic acid molecules. As two molecules of pyruvic acid are produced from each molecule of glucose a total of 24 molecules of ATP are formed during the citric acid cycle

198 (d)

When the fats respire, the value of RQ is less than one.

Glycolysis involves ten step for each step, specific enzyme needs to go next step

200 (d)

ATP is a coenzyme. Coenzyme is an organic cofactor molecule smaller than protein that bonds with a specific enzyme, while the reaction is being catalysed.

201 (c)

Oxidative phosphorylation refers to the synthesis of ATP from ADP and inorganic phosphate by chemiosmosis. It occurs with the help of energy

obtained from oxidation of reduced enzymes formed in cellular respiration.

202 **(b)**

Krebs' cycle or citric acid cycle occurs in the matrix of mitochondria. It occurs in aerobic respiration. Acetyl Co-A is the connecting link between glycolysis and Krebs' cycle. Pyruvic acid is oxidized into acetyl Co-A (6C), which is the first or initiating organic acid of Krebs' cycle.

203 (a)

Most cells of a plants have a part of their surface in contact with air. This is also facilitated by the loose packing of parenchyma cells in leaves

204 **(b)**

A variety of enzymes control different steps of cellular respiration.

205 **(c)**

NAD⁺ and NADP⁺ accepts two electrons and one proton to get reduced to NADH and NADPH respectively

206 **(b)**

The product of glycolysis is pyruvic acid the products of Krebs' cycle are CO_2 and water.

207 **(a)**

Chemiosmosis is the diffusion of ions across a selectively permeable membrane. More specifically, it relates to the generation of ATP by the movement of hydrogen ions across a membrane during cellular respiration. ATP synthase is the enzyme that makes ATP by chemiosmosis. The generation of ATP by chemiosmosis occurs in chloroplasts and mitochondria as well as in some bacteria.

208 **(d)**

Cytochromes are small proteins (intrinsic membrane proteins) that contain a cofactor, haem, which holds an iron atom. The iron carries electrons and cycles between +2 and +3 oxidation states. These form a part of electron transport chain in mitochondria and chloroplast and act as an electron transporter or electron acceptor in respiration and photosynthesis.

209 **(c)**

RQ is the ratio of volume of carbon dioxide evolved and volume of oxygen consumed. If RQ is less than one it means the oxidation of the respiratory substrate consumed more oxygen than the amount of carbon dioxide released. Volume of carbon dioxide < Volume of oxygen The flowchart given shows the step in glycolysis. The glucose 6-phosphate breaks into fructose 6phosphate and then fructose 1, 6-bisphosphate. Fructose -1, 6 bisphosphate convert into 3phophoglyceraldehydes and then 1, 3bisphosphoglyceric acid

211 **(a)**

Cyanide reacts with one of the proteins (cytochrome-a₃) in the electron transport system and prevents transfer of electron to oxygen. It leads to checking the ATP formation through oxidative phosphorylation. ATP is required for active transport of substances across the plasma membrane, besides some other metabolic reactions.

212 **(a)**

Brandy and whisky requires both distillation and fermentation as fermentation inhibited at an alcohol level of 10-18%.

213 **(d)**

Plants, unlike animals have no specialised organs for gaseous exchange but they have stomata and lenticels for this purpose

214 **(a)**

Citric acid cycle was discovered by British Chemist Hans Kreb's in 1937

215 **(d)**

*Acetobacte*r sp. Are of particular importance, commercially they also used in the production of vinegar by converting the ethanol in the wine to acetic acid.

216 **(d)**

In glycolysis, two molecules of ATP are consumed initially in converting glucose to fructose 1, 6bisphosphate. Two triose phosphate molecules are formed from one glucose molecule. Four molecules of ATP are produced at substrate level phosphorylation. Therefore, net gain of ATP is $2ATP \times 2-2ATP = 2$.

217 **(b)**

The synthesis of ATP from ADP is called phosphorylation. Substrate level phosphorylation is directly linked to liberation of energy in chemical reaction of respiration, e.g., formation of GTP is Krebs' cycle.

218 **(a)**

Malonate an analogue of succinate is a strong competitive inhibitor of succinate dehydrogenase and, therefore, blocks the activity of citric acid cycle.

219	(d)		oxidation. Hydrogen atoms are lost by glucose and
	There is a total gain of 38 ATP molecules during		gained by oxygen.
	aerobic respiration of one molecules of glucose.	229	(a)
	Out of these, two molecules of ATP are required		The term 'glycolysis' has originated from the
	for transporting the NADH produced in glycolysis		greek words, glycos for sugar and lysis for
	(in cytoplasm) into the mitochondria for further		splitting
	oxidation. Hence, the net gain of ATP is 36	230	(d)
	molecules.		Mitochondria are called power house of cell, as
220	(a)		the food material is gradually oxidised and energy
	Animals are heterotrophic, <i>i.e.</i> , they obtain food		generated is stored in the form of ATP. The
	from plants directly (herbivores) or indirectly		enzymes for Krebs' cycle (aerobic respiration)
	(carnivores)		and fatty acid oxidation are found in the matrix of
221	(c)		mitochondria.
	During Kreb's cycle as a result of formation of	231	(b)
	6NADH, 18 ATP are produced through ETS in		Incomplete breakdown of sugar in anaerobic
	mitochondria	000	respiration forms alcohol and dioxide.
ZZZ		232	
	In glycolysis, one molecule of glucose changes into		The total energy trapped per gm mole of glucose
	two molecules of pyruvic acid. Glycolysis takes	000	is 1292 kJ or 309.7 kcal with on efficiency of 45%
222	place in cytoplasm.	233	
223	(a)		Glycolysis is an essential and first path of
	Electron transport system occurs in inner		respiration. It is common in both aerobic and
	mitochondrial membrane. Electron from NADH		anaerobic respiration and occurs in the cytosol of
	produced in the mitochondrial matrix during		all living cells of prokaryotes as well as
	debudregenese (complex) and electrons are then	224	eukaryotes.
	denydrogenase (complex) and electrons are then	234	(D)
	transforred to ubiquinone located within the		Sunthagic is anabalism
	transferred to ubiquinone located within the	225	Synthesis is anabolism
224	inner membrane	235	Synthesis is anabolism (b) Ovalosuccipic acid -6 C-compound
224	transferred to ubiquinone located within the inner membrane(b)Krebe' cycle is also known as citric acid cycle (first)	235	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate
224	transferred to ubiquinone located within the inner membrane(b)Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid	235	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate -4 C-compound a-ketoglutarate -5 C-compound
224	 transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of 	235	Synthesis is anabolism(b)Oxalosuccinic acid -6 C-compoundMalate α -ketoglutarate-5 C-compoundPyruvic acid-3 C-compound
224	 transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are 	235	Synthesis is anabolism(b)Oxalosuccinic acid-6 C-compoundMalate-4 C-compound α -ketoglutarate-5 C-compoundPyruvic acid-3 C-compound(d)
224	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria	235 236	Synthesis is anabolism(b)Oxalosuccinic acid-6 C-compoundMalate-4 C-compound α -ketoglutarate-5 C-compoundPyruvic acid-3 C-compound(d)Respiratory chain for oxidative phosphorylation
224	 transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) 	235 236	Synthesis is anabolism(b)Oxalosuccinic acid-6 C-compoundMalate-4 C-compound α -ketoglutarate-5 C-compoundPyruvic acid-3 C-compound(d)Image: Comparison of the synthesis of the synthe
224 225	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to	235 236	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate -4 C-compound α -ketoglutarate -5 C-compound Pyruvic acid -3 C-compound (d) Respiratory chain for oxidative phosphorylation is located in the inner membrane of mitochondrial envelope.
224 225	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration	235 236 237	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate -4 C-compound α -ketoglutarate -5 C-compound Pyruvic acid -3 C-compound (d) Respiratory chain for oxidative phosphorylation is located in the inner membrane of mitochondrial envelope. (d)
224 225	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Ouotient (RO)	235 236 237	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate -4 C-compound α -ketoglutarate -5 C-compound Pyruvic acid -3 C-compound (d) Respiratory chain for oxidative phosphorylation is located in the inner membrane of mitochondrial envelope. (d) In both lactic acid and alcohol fermentation 7% of
224 225	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One	235 236 237	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate -4 C-compound α -ketoglutarate -5 C-compound Pyruvic acid -3 C-compound (d) Respiratory chain for oxidative phosphorylation is located in the inner membrane of mitochondrial envelope. (d) In both lactic acid and alcohol fermentation 7% of the energy in glucose is released and all of it is
224	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one	235 236 237	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate -4 C-compound α -ketoglutarate -5 C-compound Pyruvic acid -3 C-compound (d) Respiratory chain for oxidative phosphorylation is located in the inner membrane of mitochondrial envelope. (d) In both lactic acid and alcohol fermentation 7% of the energy in glucose is released and all of it is trapped as high energy bonds of ATP
224	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one	235 236 237 238	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate -4 C-compound α -ketoglutarate -5 C-compound Pyruvic acid -3 C-compound (d) Respiratory chain for oxidative phosphorylation is located in the inner membrane of mitochondrial envelope. (d) In both lactic acid and alcohol fermentation 7% of the energy in glucose is released and all of it is trapped as high energy bonds of ATP (d)
224	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one Succulents – Zero	235 236 237 238	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate -4 C-compound α -ketoglutarate -5 C-compound Pyruvic acid -3 C-compound (d) Respiratory chain for oxidative phosphorylation is located in the inner membrane of mitochondrial envelope. (d) In both lactic acid and alcohol fermentation 7% of the energy in glucose is released and all of it is trapped as high energy bonds of ATP (d) There is a sequential, orderly pathway
224 225 226	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one Succulents – Zero (d)	235 236 237 238	Synthesis is anabolism (b) Oxalosuccinic acid -6 C-compound Malate -4 C-compound α -ketoglutarate -5 C-compound Pyruvic acid -3 C-compound (d) Respiratory chain for oxidative phosphorylation is located in the inner membrane of mitochondrial envelope. (d) In both lactic acid and alcohol fermentation 7% of the energy in glucose is released and all of it is trapped as high energy bonds of ATP (d) There is a sequential, orderly pathway functioning, with one substrate forming the next
224 225 226	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one Succulents – Zero (d) Calorie is the unit of heat	235 236 237 238	Synthesis is anabolism(b)Oxalosuccinic acid -6 C-compoundMalate-4 C-compoundα-ketoglutarate-5 C-compoundPyruvic acid-3 C-compound(d)Respiratory chain for oxidative phosphorylationis located in the inner membrane of mitochondrialenvelope.(d)In both lactic acid and alcohol fermentation 7% ofthe energy in glucose is released and all of it istrapped as high energy bonds of ATP(d)There is a sequential, orderly pathwayfunctioning, with one substrate forming the nextand with glycolysis TCA cycle and ETS pathway
224 225 226 227	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one Succulents – Zero (d) Calorie is the unit of heat (c)	235 236 237 238	Synthesis is anabolism(b)Oxalosuccinic acid -6 C-compoundMalate-4 C-compoundα-ketoglutarate-5 C-compoundα-ketoglutarate-3 C-compound(d)Respiratory chain for oxidative phosphorylationis located in the inner membrane of mitochondrialenvelope.(d)In both lactic acid and alcohol fermentation 7% ofthe energy in glucose is released and all of it istrapped as high energy bonds of ATP(d)There is a sequential, orderly pathwayfunctioning, with one substrate forming the nextand with glycolysis TCA cycle and ETS pathwayfollowing one after another
224 225 226 227	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one Succulents – Zero (d) Calorie is the unit of heat (c) Aspergillus is used to prepare the Roquefort	 235 236 237 238 239 	Synthesis is anabolism(b)Oxalosuccinic acid -6 C-compoundMalate-4 C-compoundα-ketoglutarate-5 C-compoundρyruvic acid-3 C-compound(d)Respiratory chain for oxidative phosphorylationis located in the inner membrane of mitochondrialenvelope.(d)In both lactic acid and alcohol fermentation 7% ofthe energy in glucose is released and all of it istrapped as high energy bonds of ATP(d)There is a sequential, orderly pathwayfunctioning, with one substrate forming the nextand with glycolysis TCA cycle and ETS pathwayfollowing one after another(a)
224 225 226 227	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one Succulents – Zero (d) Calorie is the unit of heat (c) Aspergillus is used to prepare the Roquefort cheese.	235 236 237 238 239	Synthesis is anabolism(b)Oxalosuccinic acid -6 C-compoundMalate-4 C-compoundα-ketoglutarate-5 C-compoundα-ketoglutarate-3 C-compound(d)Respiratory chain for oxidative phosphorylationis located in the inner membrane of mitochondrialenvelope.(d)In both lactic acid and alcohol fermentation 7% ofthe energy in glucose is released and all of it istrapped as high energy bonds of ATP(d)There is a sequential, orderly pathwayfunctioning, with one substrate forming the nextand with glycolysis TCA cycle and ETS pathwayfollowing one after another(a)Sucrose is converted into glucose and fructose by
224 225 226 227 228	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one Succulents – Zero (d) Calorie is the unit of heat (c) Aspergillus is used to prepare the Roquefort cheese. (c)	235 236 237 238 239	Synthesis is anabolism(b)Oxalosuccinic acid -6 C-compoundMalate-4 C-compoundα-ketoglutarate-5 C-compoundα-ketoglutarate-3 C-compound(d)Respiratory chain for oxidative phosphorylationis located in the inner membrane of mitochondrialenvelope.(d)In both lactic acid and alcohol fermentation 7% ofthe energy in glucose is released and all of it istrapped as high energy bonds of ATP(d)There is a sequential, orderly pathwayfunctioning, with one substrate forming the nextand with glycolysis TCA cycle and ETS pathwayfollowing one after another(a)Sucrose is converted into glucose and fructose bythe enzyme invertase and these two
224 225 226 227 228	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one Succulents – Zero (d) Calorie is the unit of heat (c) Aspergillus is used to prepare the Roquefort cheese. (c) Cellular respiration is the process, in which	235 236 237 238 239	Synthesis is anabolism(b)Oxalosuccinic acid -6 C-compoundMalate-4 C-compoundα-ketoglutarate-5 C-compoundφ-xetoglutarate-3 C-compound(d)Respiratory chain for oxidative phosphorylationis located in the inner membrane of mitochondrialenvelope.(d)In both lactic acid and alcohol fermentation 7% ofthe energy in glucose is released and all of it istrapped as high energy bonds of ATP(d)There is a sequential, orderly pathwayfunctioning, with one substrate forming the nextand with glycolysis TCA cycle and ETS pathwayfollowing one after another(a)Sucrose is converted into glucose and fructose bythe enzyme invertase and these twomonosaccharide readily enter the glycolytic
224 225 226 227 228	transferred to ubiquinone located within the inner membrane (b) Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria. (c) Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration is called Respiratory Quotient (RQ) Carbohydrate – One Fat, protein – Less than one Organic acid – More than one Succulents – Zero (d) Calorie is the unit of heat (c) Aspergillus is used to prepare the Roquefort cheese. (c) Cellular respiration is the process, in which energy stored in a glucose molecule is released by	235 236 237 238 239	Synthesis is anabolism(b)Oxalosuccinic acid-6 C-compoundMalate-4 C-compoundα-ketoglutarate-5 C-compoundα-ketoglutarate-3 C-compound(d)-3 C-compoundRespiratory chainoxidative phosphorylationis located in the inner membrane of mitochondrialenvelope.(d)In both lactic acid and alcohol fermentation 7% ofthe energy in glucose is released and all of it istrapped as high energy bonds of ATP(d)There is a sequential, orderly pathwayfunctioning, with one substrate forming the nextand with glycolysis TCA cycle and ETS pathwayfollowing one after another(a)Sucrose is converted into glucose and fructose bythe enzyme invertate and these twomonosaccharide readily enter the glycolyticpathway

240 **(b)**

Triolein is unsaturated glyceride, whereas tripalmitin is a saturated glyceride. The required number of oxygen molecule for oxidation of unsaturated glyceride is always more than for saturated glyceride.

241 **(a)**

The pathway through which the electron passes from one carrier to another is called the electron transport system. It is operative in the inner mitochondrial membrane

242 (d)

Tricarboxylic acid cycle is also known as citric acid cycle or Krebs' cycle. This is an aerobic process which takes place in the matrix of mitochondria. Krebs discovered this cycle in 1937. So, this is also known as Hens Krebs' cycle.

243 **(a)**

It is the fact that in respiration glucose is broken down in oxidation within the cell and CO₂, water and energy is released therefore the suitable equations is

 $C_6H_{12}O_6 + 6O_2 \rightarrow +6CO_2 + 6H_2O + Energy$ 244 (a)

Glycolysis, Krebs' cycle and electron transport system are meant for ATP synthesis in different steps. ATP is the energy currency of cell.

245 **(a)**

There is one step in glycolysis where NADH + H⁺ is formed from NAD⁺ when 3phosphoglyceraldehyde (PGAL) is converted to 1,

3- bisphosphoglycerate (BPGA)