Boost your Board Exam preparation with the latest Class 12 Sample Question Paper 2024-25 With Answer. We provide official sample papers accompanied by detailed answers and marking schemes to help you master the new exam pattern, improve your time management, and score higher with confidence
SAMPLE QUESTION PAPER
PHYSICS
Subject Code: 042
Class: XII
Academic Session: 2024–25
Time Allowed: 3 Hours
Maximum Marks: 70
GENERAL INSTRUCTIONS
- There are 33 questions in all. All questions are compulsory.
- This question paper consists of five sections A, B, C, D and E.
- All sections are compulsory.
- Section A contains 16 questions of 1 mark each.
- Section B contains 5 questions of 2 marks each.
- Section C contains 7 questions of 3 marks each.
- Section D contains 2 case study based questions of 4 marks each.
- Section E contains 3 long answer questions of 5 marks each.
- Internal choices are provided in some questions. Attempt only one option.
- Use of calculators is not permitted.
SECTION A
(16 x 1 = 16 marks)
Q1. A uniform electric field exists in the positive X-direction. Point A is at the origin, point B lies on the X-axis at x = +1 cm and point C lies on the Y-axis at y = +1 cm. Which of the following relations between the electric potentials at A, B and C is correct?
- (A) VA< VB
- (B) VA > VB.
(C) VA < VC - (D) VA > VC
Q2. Two charged conducting spheres of radii r1 and r2 are connected by a conducting wire. The distance between the spheres is very large compared to their radii. After electrostatic equilibrium is reached, find the ratio of the magnitudes of the electric fields at the surfaces of the two spheres.
The ratio of the magnitudes of the electric fields at the surfaces of the spheres of radii r1 and r2 is

Q3. A long straight wire of circular cross-section having radius a carries a steady current uniformly distributed over its cross-section. Find the ratio of the magnitudes of the magnetic field at a point located at a distance a/2 above the surface of the wire to that at a point located at a distance a/2 below the surface of the wire.
(A) 4:1 (B) 1:1 (C) 4: 3 (D) 3 :4
Q4. Diffraction effect can be observed in which of the following types of waves?
(A) sound waves only
(C) ultrasonic waves only
(B) light waves only
(D) sound waves as well as light waves
Q5. A capacitor consists of two parallel plates each having an area of 0.001 square metre separated by a distance of 0.0001 metre. If the potential difference across the plates changes at the rate of 10 to the power 8 volt per second, calculate the displacement current through the capacitor.
- (A) 8.85 ×10−3𝐴
- (B) 8.85×10−4𝐴
- (C) 7.85×10−3𝐴
(D) 9.85 × 10−3𝐴
Q6. In a series LCR circuit, the voltages across the resistance, capacitance and inductance are each equal to 10 V. If the capacitor is short-circuited, what will be the voltage across the inductance?
- (A) 10 V
- (B) 10√2V
- (C) 10/√2V
- (D) 20 V
Q7. Match the waves listed in Column I with their methods of production listed in Column II.

Q8. An alpha particle moves towards a nucleus with speed V and has a distance of closest approach equal to d. Another alpha particle is projected with higher energy such that its distance of closest approach becomes d/2. Find the speed of projection of the second alpha particle.
- (A) V /2
- (B) √2V
(C) 2 V
(D) 4 V
Q9. A point object is placed at the centre of a glass sphere of radius 6 cm and refractive index 1.5. Find the distance of the virtual image formed from the surface of the sphere.
(A) 2 cm
(B) 4 cm
(C) 6 cm
(D) 12 cm
- Q10. Colours observed on a CD (Compact Disk) is due to
(A) Reflection - (B) Diffraction
(C) Dispersion
(D) 12 cm
Q11. The number of electrons made available for conduction by dopant atoms in a semiconductor depends strongly on which factors?
(A) doping level
(B) increase in ambient temperature
(C) energy gap
(D) options (A) and (B) both
Q12. A copper wire is stretched so that its radius decreases by 0.1 percent. Find the approximate percentage change in its resistance.
(A) –0.4%
(B) +0.8%
(C) +0.4%
(D) +0.2%
For Questions 13 to 16, Assertion and Reason are given. Choose the correct option.
A. Both Assertion and Reason are true and Reason is the correct explanation.
B. Both Assertion and Reason are true but Reason is not the correct explanation.
C. Assertion is true but Reason is false.
D. Both Assertion and Reason are false.
Q13. Assertion: Increasing the number of turns of a galvanometer coil may not necessarily increase its voltage sensitivity.
Reason: Increasing the number of turns increases the resistance of the galvanometer coil.
Q14. Assertion: The emission spectrum of hydrogen atom contains many spectral lines.
Reason: In a sample of hydrogen, electrons in different atoms may undergo different transitions between energy levels.
Q15. Assertion: Nuclei having mass number around 60 are least stable.
Reason: When two or more light nuclei combine to form a heavier nucleus, the binding energy per nucleon decreases.
Q16. Assertion: The de Broglie wavelength of a freely falling body decreases with time.
Reason: The momentum of the freely falling body increases with time.
SECTION B
(5 x 2 = 10 marks)
Q17. A platinum surface having work function 5.63 eV is illuminated by a monochromatic source of 1.6
x 10 15 Hz. What will be the minimum wavelength associated with the ejected electron.
Q18. (I) A beam of light consisting of two wavelengths, 4000 Å and 6000 Å, is used to obtain
interference fringes in a Young’s double-slit experiment. What is the least distance from the
central maximum where the dark fringe is obtained?
OR
(II) In Young’s double-slit experiment using monochromatic light of wavelength λ, the intensities
of two sources are I. What is the intensity of light at a point where path difference between
wavefronts is λ/4?
Q19. P and Q are two identical charged particles each of mass 4 × 10–26 kg and charge 4.8 × 10–19 C,
each moving with the same speed of 2.4 × 105 m/s as shown in the figure. The two particles are
equidistant (0.5 m) from the vertical Y -axis. At some instant, a magnetic field B is switched on so
that the two particles undergo head-on collision.

Find –
(I) the direction of the magnetic field and
(II) the magnitude of the magnetic field applied in the region.
(for VI candidates)
A proton is moving with speed of 2 x 105 m s–1 enters a uniform magnetic field B = 1.5 T. At the
entry velocity vector makes an angle of 30° to the direction of the magnetic field. Calculate
(a) the pitch of helical path described by the charge
(b) Kinetic energy after completing half of the circle.
Q.20. Binding energy per nucleon vs mass number curve for nuclei is shown in the figure. W, X, Y and Z
are four nuclei indicated on the curve. Identify which of the following nuclei is most likely to undergo
(i) Nuclear Fission
(ii) Nuclear Fusion.
Justify your answer.

(for V.I. Candidates)
Binding energy per nucleon and mass number of the following nuclei are given in the below table

Q21. A cylindrical conductor of length l and cross-section area A is connected to a DC source. Under the
influence of electric field set up due to source, the free electrons begin to drift in the opposite direction
of the electric field.
(I) Draw the curve showing the dependency of drift velocity on relaxation time.
(II) If the DC source is replaced by a source whose current changes its magnitude with time such
that I = Io sin 2πνt , where ν is the frequency of variation of current, then determine the average drift
velocity of the free electrons over one complete cycle.
SECTION C
(7 x 3 = 21 marks)
Q22. (I) Identify the circuit elements X and Y as shown in the given block diagram and draw the output
waveforms of X and Y.

(II) If the centre tapping is shifted towards Diode D1 as shown in the diagram, draw the output
waveform of the given circuit.

(for V.I. candidates)
Which device is used to convert AC into DC. State it’s underlying principle and explain its working. If
the frequency of input AC to this device is 60 Hz, then what will be frequency of the output of this
device.
Q23. Find the expression for the capacitance of a parallel plate capacitor of plate area A and plate separation
d when (I) a dielectric slab of thickness t and (II) a metallic slab of thickness t, where (t < d) are
introduced one by one between the plates of the capacitor. In which case would the capacitance be
more and why?
Q24. (I) Draw a ray diagram for the formation of image by a Cassegrain telescope.
(II)Why these types of telescopes are preferred over refracting type telescopes. (Write 2 points)
(for V.I. Candidates)
A Cassegrain telescope is built with an arrangement of two mirrors placing them 20 mm apart. If the radius
of curvature of the large mirror is 200mm and the small mirror is 150mm, where will the final image of an
object at infinity be?
Q25. (I) Draw the energy band diagram for P-type semiconductor at (i) T=0K and (ii) room temperature.
(II)In the given diagram considering an ideal diode, in which condition will the bulb glow
(a) when the switch is open
(b) when the switch is closed
Justify your answer.

(for V.I. Candidates)
Explain briefly how
(i) barrier potential is formed in p-n junction diode.
(ii) Width of depletion region of the diode is affected when it is (a) forward biased, (b) reverse
biased.
Q26. A boy is holding a smooth, hollow and non-conducting pipe vertically with charged spherical ball of
mass 10 g carrying a charge of +10 mC inside it which is free to move along the axis of the pipe.
The boy is moving the pipe from East to West direction in the presence of magnetic field of 2T. With
what minimum velocity, should the boy move the pipe such that the ball does not move along the
axis. Also determine the direction of the magnetic field.
Q27. A light ray entering a right-angled prism undergoes refraction at the face AC as shown in Fig. 1.
(I) What is the refractive index of the material of the prism in
Fig. 1?

(II) (a) If the side AC of the above prism is now surrounded by a liquid of refractive index

shown in Fig. 2,

determine if the light ray continues to graze along the interface AC or undergoes
total internal reflection or undergoes refraction into the liquid.
(b) Draw the ray diagram to represent the path followed by the incident ray with the corresponding
angle values.

(for V.I. candidates)
A ray of light is incident on an equilateral prism at an angle 3/4 th of the angle of the prism. If the ray
passes symmetrically through the prism, find the (a) angle of minimum deviation, and (b) refractive index
of the material of the prism.
Q28. (I)State Gauss᾿s theorem in electrostatics. Using this theorem, derive an expression for the electric
field due to an infinitely long straight wire of linear charge density .
OR
(a) Define electric flux and write its SI unit.
(b) Use Gauss᾿s law to obtain the expression for the electric field due to a uniformly charged
infinite plane sheet of charge.
Q28. (I)State Gauss᾿s theorem in electrostatics. Using this theorem, derive an expression for the electric
field due to an infinitely long straight wire of linear charge density .
OR
(II)(a) Define electric flux and write its SI unit.
(b) Use Gauss᾿s law to obtain the expression for the electric field due to a uniformly charged
infinite plane sheet of charge.
SECTION D
(2 x 4 = 8 marks)
Case Study Based Question:
Motion of Charge in Magnetic Field
(02×4=08 marks)
An electron with speed vo << c moves in a circle of radius ro in a uniform magnetic field. This
electron is able to traverse a circular path as the magnetic force acting on the electron is
perpendicular to both vo and B ,as shown in the figure. This force continuously deflects the
particle sideways without changing its speed and the particle will move along a circle
perpendicular to the field. The time required for one revolution of the electron is To

(i) If the speed of the electron is now doubled to 2vo. The radius of the circle will change to
(A) 4ro
(B) 2 ro
(C) ro
(D) ro/2
(ii) If v = 2vo, then the time required for one revolution of the electron (To ) will change to
(A) 4 To
(B) 2 To
(C) To
(D) To/2
(iii) A charged particle is projected in a magnetic field B = (2 i + 4 j) X 102 T . The acceleration of the
particle is found to be a = ( x i + 2 j ) m/s2 . Find the value of x.
(A) 4 ms-2
(B) -4 ms-2
(C) -2 ms-2
(D) 2 ms-2
(iv) If the given electron has a velocity not perpendicular to B, then trajectory of the electron is
(A) straight line
(B) circular
(C) helical
OR
(D) zig-zag
If this electron of charge (e) is moving parallel to uniform magnetic field with constant velocity v, the
force acting on the electron is
(A) Bev
(B) Be/v
(C) B/ev
Q30. Case Study Based Question: Photoelectric effect
It is the phenomenon of emission of electrons from a metallic surface when light of a suitable frequency
is incident on it. The emitted electrons are called photoelectrons.
Nearly all metals exhibit this effect with ultraviolet light but alkali metals like lithium, sodium,
potassium, cesium etc. show this effect even with visible light. It is an instantaneous process i.e.
photoelectrons are emitted as soon as the light is incident on the metal surface. The number of
photoelectrons emitted per second is directly proportional to the intensity of the incident radiation. The
maximum kinetic energy of the photoelectrons emitted from a given metal surface is independent of
the intensity of the incident light and depends only on the frequency of the incident light. For a given
metal surface there is a certain minimum value of the frequency of the incident light below which
emission of photoelectrons does not occur.
(I) In a photoelectric experiment plate current is plotted against anode potential.

(A) A and B will have same intensities while B and C will have different frequencies
(B) B and C will have different intensities while A and B will have different frequencies
(C) A and B will have different intensities while B and C will have equal frequencies
(D) B and C will have equal intensities while A and B will have same frequencies.
(II) Photoelectrons are emitted when a zinc plate is
(A) Heated
(C) Irradiated by ultraviolet light
(B) hammered
(D) subjected to a high pressure
(III) The threshold frequency for photoelectric effect on sodium corresponds to a wavelength of 500 nm.
Its work function is about
(A) 4×10−19 J
(B) 1 J
(C)2×10−19 J
(D) 3×10−19 J
(IV) The maximum kinetic energy of photoelectrons emitted from a surface when photons of energy 6 eV
fall on it is 4 eV. The stopping potential is
(A) 2 V
(B) 4 V
(C) 6 V
(D) 10 V
OR
The minimum energy required to remove an electron from a substance is called its
(A) work function
(B) kinetic energy (C) stopping potential (D) potential energy
[SECTION E]
Q31. (I) a) Write two limitations of ohm’s law. Plot their I-V characteristics.(03X5=15)
b) A heating element connected across a battery of 100 V having an internal resistance of 1 Ω
draws an initial current of 10 A at room temperature 20.0 °C which settles after a few seconds to a
steady value. What is the power consumed by battery itself after the steady temperature of 320.0 °C
is attained? Temperature coefficient of resistance averaged over the temperature range involved is
3.70 × 10–4 °C–1.
OR
(II) a) Using Kirchhoff’᾿s laws obtain the equation of the balanced state in Wheatstone bridge.
b) A wire of uniform cross-section and resistance of 12 ohm is bent in the shape of circle as
shown in the figure. A resistance of 10 ohms is connected to diametrically opposite ends C
and D. A battery of emf 8V is connected between A and B. Determine the current flowing
through arm AD.

(for V.I. Candidates)
(II) a) Using Kirchhoff’᾿s laws obtain the equation of the balanced state in Wheatstone bridge.
b) What do you understand by ‘sensitivity of Wheatstone bridge’ ? How the sensitivity of wheatstone
bridge can be increased?
Q32. (I) Explain briefly, with the help of a labelled diagram, the basic principle of the working of an a.c.
generator. In an a.c. generator, coil of N turns and area A is rotated at an angular velocity ω in a
uniform magnetic field B. Derive an expression for the instantaneous value of the emf induced
in coil. What is the source of energy generation in this device?
OR
(II) a) With the help of a diagram, explain the principle of a device which changes a low ac voltage
into a high voltage . Deduce the expression for the ratio of secondary voltage to the primary
voltage in terms of the ratio of the number of turns of primary and secondary winding. For an
ideal transformer, obtain the ratio of primary and secondary currents in terms of the ratio of
the voltages in the secondary and primary coils.
b) Write any two sources of the energy losses which occur in actual transformers.
c) A step-up transformer converts a low input voltage into a high output voltage. Does it violate
law of conservation of energy? Explain.
Q33. (I) a) A giant refracting telescope at an observatory has an objective lens of focal length 15 m. If an
eyepiece of focal length 1.0 cm is used, what is angular magnification of the telescope in
normal adjustment?
b) If this telescope is used to view the moon, what is the diameter of the image of the moon formed
by the objective lens? The diameter of the moon is 3.48 × 106 m, and the radius of lunar orbit
is 3.8 × 108 m.
OR
(II) A compound microscope consists of an objective lens of focal length 2.0 cm and an eyepiece of
focal length 6.25 cm separated by a distance of 15 cm. How far from the objective should an object
be placed in order to obtain the final image at
a) the least distance of distinct vision (25 cm) and
b) infinity? What is the magnifying power of the microscope in each case?

Math & Science Solutions by Class
Class 10
Class 9
Class 8
Class 7
Class 6
- Class 6 Math Solutions
- Class 6 Science SolutionsClass 12
- Class 12 Math Solutions
- Class 12 Physics Solutions
Class 11
- Class 11 Math Solutions
- Class 11 Physics Solutions
- Class 11 Chemistry Solutions
- Class 11 Biology Solutions
Learn more about circle formulas from NCERT.
Class-wise Solutions
Class 12:
Class 12 Physics – NCERT Solutions
Class 12 Chemistry – NCERT Solutions
Class 11:
- Class 11 Physics – NCERT Solutions
- Class 11 Chemistry – NCERT Solutions
- Class 11 Biology – NCERT Solutions
- Class 11 Math – NCERT Solutions
Class 10:
Class 9:
Class 8:
Class 7:
Class 6:
Subject-wise Solutions
Physics:
Chemistry:
Biology:
Math:
- Class 11 Math – NCERT Solutions
- Class 10 Math – NCERT Solutions
- Class 9 Math – NCERT Solutions
- Class 8 Math – NCERT Solutions
Science:
- Class 10 Science – NCERT Solutions
- Class 9 Science – NCERT Solutions
- Class 8 Science – Oxford Solutions
- Class 7 Science – Oxford Solutions
- Class 6 Science – Oxford Solutions