In Chapter 14 of Class 8 Maths, Factorisation, students learn how to break down algebraic expressions into their simplest factors. Exercise 14.2 focuses on applying the distributive property and common factors to factorise algebraic expressions.

Class 8 Maths Ch14 Factorisation Ex 14.2-NCERT Solution

This set of problems helps strengthen the understanding of taking out common terms and rewriting expressions as products of factors. The NCERT solutions provided here offer clear, step-by-step explanations to help students easily understand and solve each question in Exercise 14.2. These solutions are especially useful for self-study and exam preparation.

Class 8 Maths Ch14 Factorisation Ex 14.2-NCERT Solutions

Question 1.Factorise the following expressions.

(ii) p2 – 10p + 25
Here, 5 + 5 = 10 and 5 × 5 = 25
p2 – 10p + 25
= p2 – 5p – 5p + 5 × 5
= (p2 – 5p) + (-5p + 25)
= p(p – 5) – 5(p – 5)
= (p – 5) (p – 5)
= (p – 5)2

(iii) 25m2 + 30m + 9
Here, 15 + 15 = 30 and 15 × 15 = 25 × 9 = 225
25m2 + 30m + 9
= 25m2 + 15m + 15m + 9
= (25m2 + 15m) + (15m + 9)
= 5m(5m + 3) + 3(5m + 3)
= (5m + 3) (5m + 3)
= (5m + 3)2

(iv) 49y2 + 84yz + 36z2
Here, 42 + 42 = 84 and 42 × 42 = 49 × 36 = 1764
49y2 + 84yz + 36z2
= 49y2 + 42yz + 42yz + 36z2
= 7y(7y + 6z) +6z(7y + 6z)
= (7y + 6z) (7y + 6z)
= (7y + 6z)2

(v) 4x2 – 8x + 4
= 4(x2 – 2x + 1) [Taking 4 common]
= 4(x2 – x – x + 1)
= 4[x(x – 1) -1(x – 1)]
= 4(x – 1)(x – 1)
= 4(x – 1)2

(vi) 121b2 – 88bc + 16c2
Here, 44 + 44 = 88 and 44 × 44 = 121 × 16 = 1936
121b2 – 88bc + 16c2
= 121b2 – 44bc – 44bc + 16c2
= 11b(11b – 4c) – 4c(11b – 4c)
= (11b – 4c) (11b – 4c)
= (11b – 4c)2

(vii) (l + m)2 – 4lm
Expanding (l + m)2, we get
l2 + 2lm + m2 – 4lm
= l2 – 2lm + m2
= l2 – Im – lm + m2
= l(l – m) – m(l – m)
= (l – m) (l – m)
= (l – m)2

(viii) a4 + 2a2b2 + b4
= a4 + a2b2 + a2b2 + b4
= a2(a2 + b2) + b2(a2 + b2)
= (a2 + b2)(a2 + b2)
= (a2 + b2)2

Ex 14.2 Class 8 Maths Question 2.
Factorise.
(i) 4p2 – 9q2
(ii) 63a2 – 112b2
(iii) 49x2 – 36
(iv) 16x5 – 144x3
(v) (l + m)2 – (l – m)2
(vi) 9x2y2 – 16
(vii) (x2 – 2xy + y2) – z2
(viii) 25a2 – 4b2 + 28bc – 49c2

Solution:
(i) 4p2 – 9q2
= (2p)2 – (3q)2
= (2p – 3q) (2p + 3q)
[∵ a2 – b2 = (a + b)(a – b)]

(ii) 63a2 – 112b2
= 7(9a2 – 16b2)
= 7 [(3a)2 – (4b)2]
= 7(3a – 4b)(3a + 4b)
[∵ a2 – b2 = (a + b)(a – b)]

(iii) 49x2 – 36 = (7x)2 – (6)2
= (7x – 6) (7x + 6)
[∵ a2 – b2 = (a + b)(a – b)]

(iv) 16x5 – 144x3 = 16x3 (x2 – 9)
= 16x3 [(x)2 – (3)2]
= 16x3(x – 3)(x + 3)
[∵ a– b2 = (a + b)(a – b)]

(v) (l + m)2 – (l – m)2
= (l + m) – (l – m)] [(l + m) + (l – m)]
[∵ a2 – b2 = (a + b)(a – b)]
= (l + m – l + m)(l + m + l – m)
= (2m) (2l)
= 4ml

(vi) 9x2y2 – 16 = (3xy)2 – (4)2
= (3xy – 4)(3xy + 4)
[∵ a2 – b2 = (a + b)(a – b)]

(vii) (x2 – 2xy + y2) – z2
= (x – y)2 – z2
= (x – y – z) (x – y + z)
[∵ a2 – b2 = (a + b)(a – b)]

(viii) 25a2 – 4b2 + 28bc – 49c2
= 25a2 – (4b2 – 28bc + 49c2)
= (5a)2 – (2b – 7c)2
= [5a – (2b – 7c)] [5a + (2b – 7c)]
= (5a – 2b + 7c)(5a + 2b – 7c)

Ex 14.2 Class 8 Maths Question 3.
Factorise the expressions.
(i) ax2 + bx
(ii) 7p2 + 21q2
(iii) 2x3 + 2xy2 + 2xz2
(iv) am2 + bm2 + bn+ an2
(v) (lm + l) + m + 1
(vi) y(y + z) + 9(y + z)
(vii) 5y2 – 20y – 8z + 2yz
(viii) 10ab + 4a + 5b + 2
(ix) 6xy – 4y + 6 – 9x

Solution:
(i) ax2 + bx = x(ax + 5)

(ii) 7p2 + 21q2 = 7(p2 + 3q2)

(iii) 2x3 + 2xy2 + 2xz2 = 2x(x2 + y2 + z2)

(iv) am2 + bm2 + bn2 + an2
= m2 (a + b) + n2(a + b)
= (a + b)(m2 + n2)

(v) (lm + l) + m + 1
= l(m + 1) + (m + 1)
= (m + 1) (l + 1)

(vi) y(y + z) + 9(y + z) = (y + z)(y + 9)

(vii) 5y2 – 20y – 8z + 2yz
= 5y2 – 20y + 2yz – 8z
= 5y(y – 4) + 2z(y – 4)
= (y – 4) (5y + 2z)

(viii) 10ab + 4a + 5b + 2
= 2a(5b + 2) + 1(5b + 2)
= (5b + 2)(2a + 1)

(ix) 6xy – 4y + 6 – 9x
= 6xy – 4y – 9x + 6
= 2y(3x – 2) – 3(3x – 2)
= (3x – 2) (2y – 3)

Ex 14.2 Class 8 Maths Question 4.
Factorise.
(i) a4 – b4
(ii) p4 – 81
(iii) x4 – (y + z)4
(iv) x4 – (x – z)4
(v) a4 – 2a2b2 + b4

Solution:
(i) a4 – b4 – (a2)2 – (b2)2
[∵ a2 – b2 = (a – b)(a + b)]
= (a2 – b2) (a2 + b2)
= (a – b) (a + b) (a2 + b2)

(ii) p4 – 81 = (p2)– (9)2
= (p2 – 9) (p2 + 9)
[∵ a2 – b2 = (a – b)(a + b)]
= (p – 3)(p + 3) (p2 + 9)

(iii) x4 – (y + z)4 = (x2)2 – [(y + z)2]2
[∵ a2 – b2 = (a – b)(a + b)]
= [x2 – (y + z)2] [x2 + (y + z)2]
= [x – (y + z)] [x + (y + z)] [x2 + (y + z)2]
= (x – y – z) (x + y + z) [x2 + (y + z)2]

(iv) x4 – (x – z)4 = (x2)2 – [(y – z)2]2
= [x2 – (y – z)2] [x2 + (y – z)2]
= (x – y + z) (x + y – z) (x2 + (y – z)2]

(v) a4 – 2a2b2 + b4
= a4 – a2b2 – a2b2 + b4
= a2(a2 – b2) – b2(a2 – b2)
= (a2 – b2)(a2 – b2)
= (a2 – b2)2
= [(a – b) (a + b)]2
= (a – b)2 (a + b)2

Ex 14.2 Class 8 Maths Question 5.
Factorise the following expressions.
(i) p2 + 6p + 8
(ii) q2 – 10q + 21
(iii) p2 + 6p – 16

Solution:
(i) p2 + 6p + 8
Here, 2 + 4 = 6 and 2 × 4 = 8
p2 + 6p + 8
= p2 + 2p + 4p + 8
= p (p + 2) + 4(p + 2)
= (p + 2) (p + 4)

(ii) q2 – 10q + 21
Here, 3 + 7 = 10 and 3 × 7 = 21
q2 – 10q + 21
= q2 – 3q – 7q + 21
= q(q – 3) – 7(q – 3)
= (q – 3) (q – 7)

(iii) p2 + 6p – 16
Here, 8 – 2 = 6 and 8 × 2 = 16
p2 + 6p – 16
= p2 + 8p – 2p – 16
= p(p + 8) – 2(p + 8)
= (p + 8) (p – 2)

Q1: Factorise the following expressions

(i) a² + 8a + 16
(ii) p² – 10p + 25
(iii) 25m² + 30m + 9
(iv) 49y² + 84yz + 36z²
(v) 4x² – 8x + 4
(vi) 121b² – 88bc + 16c²
(vii) (l + m)² – 4lm
(viii) a⁴ + 2a²b² + b⁴

Solutions

(i) a² + 8a + 16
= a² + 2×4×a + 4²
= (a + 4)²

(ii) p² – 10p + 25
= p² – 2×5×p + 5²
= (p – 5)²

(iii) 25m² + 30m + 9
= (5m)² + 2×5m×3 + 3²
= (5m + 3)²

(iv) 49y² + 84yz + 36z²
= (7y)² + 2×7y×6z + (6z)²
= (7y + 6z)²

(v) 4x² – 8x + 4
= (2x)² – 2×2x×2 + 2²
= (2x – 2)²

(vi) 121b² – 88bc + 16c²
= (11b)² – 2×11b×4c + (4c)²
= (11b – 4c)²

(vii) (l + m)² – 4lm
= l² + 2lm + m² – 4lm
= l² – 2lm + m²
= (l – m)²

(viii) a⁴ + 2a²b² + b⁴
= (a²)² + 2a²b² + (b²)²
= (a² + b²)²

Q2: Factorise

(i) 4p² − 9q²
(ii) 63a² − 112b²
(iii) 49x² − 36
(iv) 16x⁵ − 144x³
(v) (l + m)² − (l − m)²
(vi) 9x²y² − 16
(vii) (x² − 2xy + y²) − z²
(viii) 25a² − 4b² + 28bc − 49c²

Solutions

(i) 4p² − 9q²
= (2p)² − (3q)²
= (2p − 3q)(2p + 3q)

(ii) 63a² − 112b²
= Common factor is 7
= 7(9a² − 16b²)
= 7[(3a)² − (4b)²]
= 7(3a − 4b)(3a + 4b)

(iii) 49x² − 36
= (7x)² − 6²
= (7x − 6)(7x + 6)

(iv) 16x⁵ − 144x³
= Common factor is 16x³
= 16x³(x² − 9)
= 16x³[(x − 3)(x + 3)]

(v) (l + m)² − (l − m)²
Use identity: a² − b² = (a − b)(a + b)
Let a = (l + m), b = (l − m)
= [(l + m) − (l − m)][(l + m) + (l − m)]
= [l + m − l + m][l + m + l − m]
= [2m][2l] = 4lm

(vi) 9x²y² − 16
= (3xy)² − 4²
= (3xy − 4)(3xy + 4)

(vii) (x² − 2xy + y²) − z²
= (x − y)² − z²
Use identity: a² − b² = (a − b)(a + b)
= [(x − y) − z][(x − y) + z]
= (x − y − z)(x − y + z)

(viii) 25a² − 4b² + 28bc − 49c²
Group the middle terms:
= 25a² − (4b² − 28bc + 49c²)
= 25a² − [(2b − 7c)²]
Now apply: a² − b² = (a − b)(a + b)
= [5a − (2b − 7c)][5a + (2b − 7c)]
= (5a − 2b + 7c)(5a + 2b − 7c)

Q3: Factorise the expressions

(i) ax² + bx
(ii) 7p² + 21q²
(iii) 2x³ + 2xy² + 2x²
(iv) am² + bm² + bn² + an²
(v) (lm + l) + m + 1
(vi) y(y + z) + 9(y + z)
(vii) 5y² − 20y − 8z + 2yz
(viii) 10ab + 4a + 5b + 2
(ix) 6xy − 4y + 6 − 9x

Solutions

(i) ax² + bx
= x(ax + b)

(ii) 7p² + 21q²
= 7(p² + 3q²)

(iii) 2x³ + 2xy² + 2x²
= 2x(x² + y² + x)

(iv) am² + bm² + bn² + an²
Group terms:
= (am² + bm²) + (bn² + an²)
= m²(a + b) + n²(b + a)
= m²(a + b) + n²(a + b)
= (a + b)(m² + n²)

(v) (lm + l) + m + 1
Group and factor:
= l(m + 1) + (m + 1)
= (m + 1)(l + 1)

(vi) y(y + z) + 9(y + z)
= (y + z)(y + 9)

(vii) 5y² − 20y − 8z + 2yz
Group:
= (5y² − 20y) + (−8z + 2yz)
= 5y(y − 4) − 2z(4 − y)
= 5y(y − 4) + 2z(y − 4)
= (y − 4)(5y + 2z)

(viii) 10ab + 4a + 5b + 2
Group:
= (10ab + 4a) + (5b + 2)
= 2a(5b + 2) + 1(5b + 2)
= (5b + 2)(2a + 1)

(ix) 6xy − 4y + 6 − 9x
Group:
= (6xy − 4y) + (6 − 9x)
= 2y(3x − 2) − 3(3x − 2)
= (3x − 2)(2y − 3)

Q4: Factorise

(i) a⁴ − b⁴
(ii) p⁴ − 81
(iii) x⁴ − (y + z)⁴
(iv) x⁴ − (x − z)⁴
(v) a⁴ − 2a²b² + b⁴

Solutions

(i) a⁴ − b⁴
= (a²)² − (b²)²
= (a² − b²)(a² + b²)
Now factor a² − b² again:
= (a − b)(a + b)(a² + b²)

(ii) p⁴ − 81
= p⁴ − 3⁴
= (p²)² − 9²
= (p² − 9)(p² + 9)
Now factor p² − 9:
= (p − 3)(p + 3)(p² + 9)

(iii) x⁴ − (y + z)⁴
= (x²)² − [(y + z)²]²
Use identity: a² − b² = (a − b)(a + b)
= [x² − (y + z)²][x² + (y + z)²]
Now factor x² − (y + z)²:
= [(x − (y + z))(x + (y + z))][x² + (y + z)²]
= (x − y − z)(x + y + z)(x² + (y + z)²)

(iv) x⁴ − (x − z)⁴
Let A = x², B = (x − z)²
So: x⁴ − (x − z)⁴ = A² − B²
= (A − B)(A + B)
= [x² − (x − z)²][x² + (x − z)²]
Now expand and simplify:

First part:
x² − (x − z)²
= x² − [x² − 2xz + z²] = 2xz − z²
Second part:
x² + (x − z)² = x² + x² − 2xz + z² = 2x² − 2xz + z²

Final answer:
= (2xz − z²)(2x² − 2xz + z²)

(v) a⁴ − 2a²b² + b⁴
This is a perfect square trinomial:
= (a² − b²)²
Now factor further:
= [(a − b)(a + b)]²
= (a − b)²(a + b)²

Q5: Factorise using mid-term method

(i) p² + 6p + 8
Find two numbers whose sum = 6 and product = 8 → 2 and 4
= p² + 2p + 4p + 8
= (p² + 2p) + (4p + 8)
= p(p + 2) + 4(p + 2)
= (p + 2)(p + 4)

(ii) q² − 10q + 21
Find two numbers whose sum = -10 and product = 21 → -3 and -7
= q² − 3q − 7q + 21
= (q² − 3q) − (7q − 21)
= q(q − 3) − 7(q − 3)
= (q − 3)(q − 7)

(iii) p² + 6p − 16
Find two numbers whose sum = 6 and product = -16 → 8 and -2
= p² + 8p − 2p − 16
= (p² + 8p) − (2p + 16)
= p(p + 8) − 2(p + 8)
= (p + 8)(p − 2)

📘 Math & Science Solutions by Class

🔹 Class 10

🔹 Class 9

🔹 Class 8

🔹 Class 7

🔹 Class 6

🔹 Class 12

🔹 Class 11

For the official Class 8 Mathematics Solutions, you can visit:

  1. NCERT Textbooks (for Class 8):